Bøsling Jacob, Poulsen Susan M, Vester Birte, Long Katherine S
Institute of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark.
Antimicrob Agents Chemother. 2003 Sep;47(9):2892-6. doi: 10.1128/AAC.47.9.2892-2896.2003.
The antibiotic tiamulin targets the 50S subunit of the bacterial ribosome and interacts at the peptidyl transferase center. Tiamulin-resistant Escherichia coli mutants were isolated in order to elucidate mechanisms of resistance to the drug. No mutations in the rRNA were selected as resistance determinants using a strain expressing only a plasmid-encoded rRNA operon. Selection in a strain with all seven chromosomal rRNA operons yielded a mutant with an A445G mutation in the gene coding for ribosomal protein L3, resulting in an Asn149Asp alteration. Complementation experiments and sequencing of transductants demonstrate that the mutation is responsible for the resistance phenotype. Chemical footprinting experiments show a reduced binding of tiamulin to mutant ribosomes. It is inferred that the L3 mutation, which points into the peptidyl transferase cleft, causes tiamulin resistance by alteration of the drug-binding site. This is the first report of a mechanism of resistance to tiamulin unveiled in molecular detail.
抗生素泰妙菌素作用于细菌核糖体的50S亚基,并在肽基转移酶中心相互作用。为了阐明对该药物的耐药机制,分离出了对泰妙菌素耐药的大肠杆菌突变体。使用仅表达质粒编码的rRNA操纵子的菌株,未选择rRNA中的突变作为耐药决定因素。在具有所有七个染色体rRNA操纵子的菌株中进行筛选,得到了一个在核糖体蛋白L3编码基因中发生A445G突变的突变体,导致Asn149Asp改变。互补实验和转导子测序表明该突变是耐药表型的原因。化学足迹实验表明泰妙菌素与突变核糖体的结合减少。据推测,指向肽基转移酶裂隙中的L3突变通过改变药物结合位点导致泰妙菌素耐药。这是首次详细揭示泰妙菌素耐药机制的报告。