Suppr超能文献

[基于人工神经网络的五组分红外光谱系统测定]

[Determination of five component infrared spectra system with artificial neural network].

作者信息

Li Y, Sun X, Wang J

机构信息

Laboratory of Advanced Spectroscopy, Nanjing University of Science and Technology, 210014 Nanjing.

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2000 Dec;20(6):773-6.

Abstract

This article demonstrates the application of artificial neural network in multi-component analysis. Parameters were obtained after the BP network was trained with large amount of simulated data. Five organic toxins whose FTIR spectra are strongly overlapped were used to make the multi-component system. The relative standard deviation(RSD%), the percent standard error of prediction samples(SEP%) and the percent standard error of calibration samples(SEC%) were used for evaluating the ability of the neural network.

摘要

本文展示了人工神经网络在多组分分析中的应用。在用大量模拟数据对BP网络进行训练后获得了参数。使用了五种傅里叶变换红外光谱(FTIR)严重重叠的有机毒素来构建多组分系统。相对标准偏差(RSD%)、预测样品的标准误差百分比(SEP%)和校准样品的标准误差百分比(SEC%)被用于评估神经网络的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验