Hurri Jarmo, Hyvärinen Aapo
Neural Networks Research Centre, Helsinki University of Technology, PO Box 9800, 02015 HUT, Finland.
Network. 2003 Aug;14(3):527-51.
We present a two-layer dynamic generative model of the statistical structure of natural image sequences. The second layer of the model is a linear mapping from simple-cell outputs to pixel values, as in most work on natural image statistics. The first layer models the dependencies of the activity levels (amplitudes or variances) of the simple cells, using a multivariate autoregressive model. The second layer shows the emergence of basis vectors that are localized, oriented and have different scales, just like in previous work. But in our new model, the first layer learns connections between the simple cells that are similar to complex cell pooling: connections are strong among cells with similar preferred location, frequency and orientation. In contrast to previous work in which one of the layers needed to be fixed in advance, the dynamic model enables us to estimate both of the layers simultaneously from natural data.
我们提出了一种自然图像序列统计结构的两层动态生成模型。与大多数关于自然图像统计的工作一样,该模型的第二层是从简单细胞输出到像素值的线性映射。第一层使用多元自回归模型对简单细胞活动水平(幅度或方差)的依赖性进行建模。第二层展示了与先前工作一样的局部化、定向且具有不同尺度的基向量的出现。但在我们的新模型中,第一层学习简单细胞之间类似于复杂细胞池化的连接:在具有相似偏好位置、频率和方向的细胞之间连接很强。与之前需要预先固定其中一层的工作不同,动态模型使我们能够从自然数据中同时估计两层。