Olivella Santiago, Solé Albert
Institut d'Investigacions Químiques i Ambientals de Barcelona, CSIC, Jordi Girona 18, 08034-Barcelona, Catalonia, Spain.
J Am Chem Soc. 2003 Sep 3;125(35):10641-50. doi: 10.1021/ja030171e.
The three pathways postulated for 1,3-migration of the peroxyl group in the allylperoxyl radical (1a), a key reaction involved in the spontaneous autoxidation of unsaturated lipids of biological importance, have been investigated by means of quantum mechanical electronic structure calculations. According to the barrier heights calculated from RCCSD(T)/6-311+G(3df,2p) energies with optimized molecular geometries and harmonic vibrational frequencies determined at the UMP2/6-311+G(3df,2p) level, the allylperoxyl rearrangement proceeds by fragmentation of 1a through a transition structure (TS1) with a calculated DeltaH++(298 K) of 21.7 kcal/mol to give an allyl radical-triplet dioxygen loosely bound complex (CX). In a subsequent step, the triplet dioxygen moiety of CX recombines at either end of the allyl radical moiety to convert the complex to the rearranged peroxyl radical (1a') or to revert to the starting peroxyl radical 1a. CX shows an electron charge transfer of 0.026 e in the direction allyl --> O(2). The dominant attractive interactions holding in association the allyl radical-triplet dioxygen pair in CX are due chiefly to dispersion forces. The DeltaH(298 K) for dissociation of CX in its isolated partners, allyl radical and triplet dioxygen, is predicted to be at least 1 kcal/mol. The formation of CX prevents the diffusion of its partners and maintains the stereocontrol along the fragmentation-recombination processes. The concerted 1,3-migration in allylperoxyl radical is predicted to take place through a five-membered ring peroxide transition structure (TS2) showing two long C-O bonds. The DeltaH++(298 K) calculated for this pathway is less favorable than the fragmentation-recombination pathway by 1.9 kcal/mol. The cyclization of 1a to give a dioxolanyl radical intermediate (2a) is found to proceed through a five-membered ring transition structure (TS3) with a calculated DeltaH++(298 K) of 33.9 kcal/mol. Thus, the sequence of ring closure 1a --> 2a and ring opening 2a --> 1a' is unlikely to play any significant role in allylperoxyl rearrangement 1a --> 1a'. In the three pathways investigated, the energy of the transition structure is predicted to be somewhat lower in either heptane or aqueous solution than in the gas phase. Although the energy lowering calculated for TS1 is smaller than the calculated for TS2 and TS3, it is very unlikely that the solvent effects may reverse the predicted preference of the fragmentation-recombination pathway over the concerted and stepwise ring closure-ring opening mechanisms.
烯丙基过氧自由基(1a)中过氧基团的1,3-迁移存在三种假定途径,这是生物重要性不饱和脂质自发自氧化所涉及的关键反应,已通过量子力学电子结构计算进行了研究。根据从RCCSD(T)/6-311+G(3df,2p)能量计算得出的势垒高度,以及在UMP2/6-311+G(3df,2p)水平确定的优化分子几何结构和谐波振动频率,烯丙基过氧重排通过1a断裂形成过渡结构(TS1)进行,计算得出的ΔH++(298 K)为21.7 kcal/mol,生成烯丙基自由基-三线态双氧松散结合复合物(CX)。在后续步骤中,CX的三线态双氧部分在烯丙基自由基部分的任一端重新结合,将复合物转化为重排的过氧自由基(1a')或恢复为起始过氧自由基1a。CX在烯丙基→O(2)方向上显示出0.026 e的电荷转移。在CX中使烯丙基自由基-三线态双氧对结合在一起的主要吸引相互作用主要归因于色散力。预测CX在其孤立的伙伴烯丙基自由基和三线态双氧中的解离ΔH(298 K)至少为1 kcal/mol。CX的形成阻止了其伙伴的扩散,并在断裂-重组过程中保持了立体控制。烯丙基过氧自由基中的协同1,3-迁移预计通过具有两个长C-O键的五元环过氧化物过渡结构(TS2)发生。计算得出该途径的ΔH++(298 K)比分步断裂-重组途径不利1.9 kcal/mol。发现1a环化生成二氧戊环基自由基中间体(2a)通过五元环过渡结构(TS3)进行,计算得出的ΔH++(298 K)为33.9 kcal/mol。因此,环化序列1a→2a和开环2a→1a'在烯丙基过氧重排1a→1a'中不太可能起任何重要作用。在所研究的三种途径中,预测过渡结构在庚烷或水溶液中的能量比在气相中略低。尽管计算得出TS1的能量降低比TS2和TS3小,但溶剂效应极不可能逆转预测的分步断裂-重组途径优于协同和分步闭环-开环机制的偏好。