Kriegl Jan M, Forster Florian K, Nienhaus G Ulrich
Department of Biophysics, University of Ulm, Ulm, Germany.
Biophys J. 2003 Sep;85(3):1851-70. doi: 10.1016/S0006-3495(03)74613-X.
Many proteins can be immobilized in silica hydrogel matrices without compromising their function, making this a suitable technique for biosensor applications. Immobilization will in general affect protein structure and dynamics. To study these effects, we have measured the P(+)Q(A)(-) charge recombination kinetics after laser excitation of Q(B)-depleted wild-type photosynthetic reaction centers from Rhodobacter sphaeroides in a tetramethoxysilane (TMOS) sol-gel matrix and, for comparison, also in cryosolvent. The nonexponential electron transfer kinetics observed between 10 and 300 K were analyzed quantitatively using the spin boson model for the intrinsic temperature dependence of the electron transfer and an adiabatic change of the energy gap and electronic coupling caused by protein motions in response to the altered charge distributions. The analysis reveals similarities and differences in the TMOS-matrix and bulk-solvent samples. In both preparations, electron transfer is coupled to the same spectrum of low frequency phonons. As in bulk solvent, charge-solvating protein motions are present in the TMOS matrix. Large-scale conformational changes are arrested in the hydrogel, as evident from the nonexponential kinetics even at room temperature. The altered dynamics is likely responsible for the observed changes in the electronic coupling matrix element.
许多蛋白质可以固定在硅胶水凝胶基质中而不影响其功能,这使得该技术适用于生物传感器应用。固定化通常会影响蛋白质的结构和动力学。为了研究这些影响,我们测量了在四甲氧基硅烷(TMOS)溶胶 - 凝胶基质中以及作为比较在冷冻溶剂中,对来自球形红杆菌的Q(B)耗尽的野生型光合反应中心进行激光激发后的P(+)Q(A)(-)电荷复合动力学。使用自旋玻色子模型对10至300 K之间观察到的非指数电子转移动力学进行了定量分析,该模型考虑了电子转移的固有温度依赖性以及由于蛋白质运动响应电荷分布变化而导致的能隙和电子耦合的绝热变化。分析揭示了TMOS基质样品和本体溶剂样品中的异同。在这两种制剂中,电子转移都与相同频谱的低频声子耦合。与本体溶剂中一样,TMOS基质中存在电荷溶剂化的蛋白质运动。从即使在室温下的非指数动力学也可以明显看出,水凝胶中大规模的构象变化被阻止。动力学的改变可能是观察到的电子耦合矩阵元变化的原因。