Suppr超能文献

光合反应中心中的电子转移与蛋白质动力学

Electron transfer and protein dynamics in the photosynthetic reaction center.

作者信息

McMahon B H, Müller J D, Wraight C A, Nienhaus G U

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801, USA.

出版信息

Biophys J. 1998 May;74(5):2567-87. doi: 10.1016/S0006-3495(98)77964-0.

Abstract

We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.

摘要

我们测量了来自球形红细菌反应中心(RC)复合物中,从初级醌(Q(A))到特殊对(P)的电子转移(ET)动力学,该动力学是温度(5 - 300 K)、光照方案(在黑暗中冷却以及在110、160、180和280 K光照下冷却)和升温速率(1.3和13 mK/s)的函数。非指数动力学用一个量子力学ET模型(费米黄金规则和自旋玻色子模型)来解释,其中蛋白质集合体的异质性、弛豫和涨落被纳入一个单一坐标,该坐标单调弛豫且对由ET引起的所有类型的弛豫敏感。我们的分析表明,响应ET发生的结构变化使供体和受体状态之间的自由能隙降低120 meV,并使供体和受体状态之间的电子耦合从2.7×10⁻⁴ cm⁻¹降低到1.8×10⁻⁴ cm⁻¹。在低温下,构象变化可以减缓或完全停止,这使我们能够监测退火时间尺度(约10³ - 10⁴ s)以及ET时间尺度(约100 ms)上的弛豫。弛豫发生在四个宽泛的构象亚态层级内,平均表观阿累尼乌斯活化焓分别为17、50、78和110 kJ/mol,预指数因子分别为10¹³、10¹⁵、10²¹和10²⁵ s⁻¹。该参数化提供了所有温度下弛豫时间进程的预测。在300 K时,预计弛豫将在1 ps到1 ms之间发生,而在较低温度下,预计弛豫时间分布会更宽。ET速率对温度和蛋白质构象的弱依赖性,以及用单个构象坐标对异质性和动力学进行建模的可能性,使RC成为研究蛋白质构象变化动力学的有用模型系统。

相似文献

引用本文的文献

6
Shedding Light on Primary Donors in Photosynthetic Reaction Centers.揭示光合反应中心中的初级供体
Front Microbiol. 2021 Oct 1;12:735666. doi: 10.3389/fmicb.2021.735666. eCollection 2021.

本文引用的文献

1
2
Intramolecular long-distance electron transfer in organic molecules.有机分子内的长程电子转移。
Science. 1988 Apr 22;240(4851):440-7. doi: 10.1126/science.240.4851.440.
3
A topographic view of supercooled liquids and glass formation.过冷液体和玻璃形成的地形视图。
Science. 1995 Mar 31;267(5206):1935-9. doi: 10.1126/science.267.5206.1935.
4
Formation of glasses from liquids and biopolymers.由液体和生物聚合物形成玻璃。
Science. 1995 Mar 31;267(5206):1924-35. doi: 10.1126/science.267.5206.1924.
8
Light-induced and thermal relaxation in a protein.蛋白质中的光诱导和热弛豫
Phys Rev Lett. 1995 Mar 27;74(13):2607-2610. doi: 10.1103/PhysRevLett.74.2607.
9
Scaling in the relaxation of supercooled liquids.
Phys Rev Lett. 1990 Aug 27;65(9):1108-1111. doi: 10.1103/PhysRevLett.65.1108.
10
Glassy behavior of a protein.蛋白质的玻璃态行为。
Phys Rev Lett. 1989 Apr 17;62(16):1916-1919. doi: 10.1103/PhysRevLett.62.1916.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验