McMahon B H, Müller J D, Wraight C A, Nienhaus G U
Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801, USA.
Biophys J. 1998 May;74(5):2567-87. doi: 10.1016/S0006-3495(98)77964-0.
We have measured the kinetics of electron transfer (ET) from the primary quinone (Q(A)) to the special pair (P) of the reaction center (RC) complex from Rhodobacter sphaeroides as a function of temperature (5-300 K), illumination protocol (cooled in the dark and under illumination from 110, 160, 180, and 280 K), and warming rate (1.3 and 13 mK/s). The nonexponential kinetics are interpreted with a quantum-mechanical ET model (Fermi's golden rule and the spin-boson model), in which heterogeneity of the protein ensemble, relaxations, and fluctuations are cast into a single coordinate that relaxes monotonically and is sensitive to all types of relaxations caused by ET. Our analysis shows that the structural changes that occur in response to ET decrease the free energy gap between donor and acceptor states by 120 meV and decrease the electronic coupling between donor and acceptor states from 2.7 x 10(-4) cm(-1) to 1.8 x 10(-4) cm(-1). At cryogenic temperatures, conformational changes can be slowed or completely arrested, allowing us to monitor relaxations on the annealing time scale (approximately 10(3)-10(4) s) as well as the time scale of ET (approximately 100 ms). The relaxations occur within four broad tiers of conformational substates with average apparent Arrhenius activation enthalpies of 17, 50, 78, and 110 kJ/mol and preexponential factors of 10(13), 10(15), 10(21), and 10(25) s(-1), respectively. The parameterization provides a prediction of the time course of relaxations at all temperatures. At 300 K, relaxations are expected to occur from 1 ps to 1 ms, whereas at lower temperatures, even broader distributions of relaxation times are expected. The weak dependence of the ET rate on both temperature and protein conformation, together with the possibility of modeling heterogeneity and dynamics with a single conformational coordinate, make RC a useful model system for probing the dynamics of conformational changes in proteins.
我们测量了来自球形红细菌反应中心(RC)复合物中,从初级醌(Q(A))到特殊对(P)的电子转移(ET)动力学,该动力学是温度(5 - 300 K)、光照方案(在黑暗中冷却以及在110、160、180和280 K光照下冷却)和升温速率(1.3和13 mK/s)的函数。非指数动力学用一个量子力学ET模型(费米黄金规则和自旋玻色子模型)来解释,其中蛋白质集合体的异质性、弛豫和涨落被纳入一个单一坐标,该坐标单调弛豫且对由ET引起的所有类型的弛豫敏感。我们的分析表明,响应ET发生的结构变化使供体和受体状态之间的自由能隙降低120 meV,并使供体和受体状态之间的电子耦合从2.7×10⁻⁴ cm⁻¹降低到1.8×10⁻⁴ cm⁻¹。在低温下,构象变化可以减缓或完全停止,这使我们能够监测退火时间尺度(约10³ - 10⁴ s)以及ET时间尺度(约100 ms)上的弛豫。弛豫发生在四个宽泛的构象亚态层级内,平均表观阿累尼乌斯活化焓分别为17、50、78和110 kJ/mol,预指数因子分别为10¹³、10¹⁵、10²¹和10²⁵ s⁻¹。该参数化提供了所有温度下弛豫时间进程的预测。在300 K时,预计弛豫将在1 ps到1 ms之间发生,而在较低温度下,预计弛豫时间分布会更宽。ET速率对温度和蛋白质构象的弱依赖性,以及用单个构象坐标对异质性和动力学进行建模的可能性,使RC成为研究蛋白质构象变化动力学的有用模型系统。