González-Miranda J M
Departamento de Fisica Fundamental, Universidad de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain.
Chaos. 2003 Sep;13(3):845-52. doi: 10.1063/1.1594851.
Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur when an unstable periodic orbit collides with the chaotic attractor. We present here numerical evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh-Rose model of a neuron, at the transition point between the bursting and spiking dynamics, which are two different dynamic behaviors that this system is able to present. Moreover, besides the change in attractor size, other significant properties of the system undergoing the transitions do change in a relevant qualitative way. The mechanism for such transition is understood in terms of a simple one-dimensional map whose dynamics undergoes a crossover between two different universal behaviors.
内部危机被理解为当一个不稳定的周期轨道与混沌吸引子碰撞时,混沌吸引子大小的不连续变化。我们在此给出数值证据和理论推理,证明存在一种混沌 - 混沌转变,其中吸引子大小的变化是突然但连续的。这发生在神经元的 Hindmarsh - Rose 模型中,在爆发动力学和尖峰动力学之间的转变点,而这是该系统能够呈现的两种不同动态行为。此外,除了吸引子大小的变化外,经历转变的系统的其他重要性质也会以相关的定性方式发生变化。这种转变的机制可以通过一个简单的一维映射来理解,其动力学在两种不同的普适行为之间发生交叉。