Suppr超能文献

逃逸的几何与拓扑。I. 回归。

Geometry and topology of escape. I. Epistrophes.

作者信息

Mitchell K A, Handley J P, Tighe B, Delos J B, Knudson S K

机构信息

Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795, USA.

出版信息

Chaos. 2003 Sep;13(3):880-91. doi: 10.1063/1.1598311.

Abstract

We consider a dynamical system given by an area-preserving map on a two-dimensional phase plane and consider a one-dimensional line of initial conditions within this plane. We record the number of iterates it takes a trajectory to escape from a bounded region of the plane as a function along the line of initial conditions, forming an "escape-time plot." For a chaotic system, this plot is in general not a smooth function, but rather has many singularities at which the escape time is infinite; these singularities form a complicated fractal set. In this article we prove the existence of regular repeated sequences, called "epistrophes," which occur at all levels of resolution within the escape-time plot. (The word "epistrophe" comes from rhetoric and means "a repeated ending following a variable beginning.") The epistrophes give the escape-time plot a certain self-similarity, called "epistrophic" self-similarity, which need not imply either strict or asymptotic self-similarity.

摘要

我们考虑一个由二维相平面上的保面积映射给出的动力系统,并考虑该平面内的一维初始条件线。我们记录一条轨迹从平面的有界区域逃逸所需的迭代次数,将其作为沿初始条件线的函数,形成一个“逃逸时间图”。对于一个混沌系统,这个图通常不是一个光滑函数,而是有许多奇点,在这些奇点处逃逸时间是无穷大的;这些奇点形成一个复杂的分形集。在本文中,我们证明了存在规则的重复序列,称为“结尾重复”,它出现在逃逸时间图的所有分辨率级别上。(“结尾重复”一词来自修辞学,意思是“在可变开头之后的重复结尾”。)结尾重复赋予逃逸时间图某种自相似性,称为“结尾重复”自相似性,这不一定意味着严格或渐近自相似性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验