Lu Kening, Xu Daoyi, Yang Zhichun
Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
Neural Netw. 2006 Dec;19(10):1538-49. doi: 10.1016/j.neunet.2006.07.006. Epub 2006 Sep 29.
We consider a class of Cohen-Grossberg neural networks with delays. We prove the existence and global asymptotic stability of an equilibrium point and estimate the region of existence. Furthermore, we show that the trajectories of the neural networks with positive initial data will stay in the positive region if the amplification function satisfies a divergent condition. We also establish the existence of a globally attracting compact set for more general networks. We estimate this compact set explicitly in terms of the network parameters from physiological and biological models. Our results can be applied to neural networks with a wide range of activation functions which are neither bounded nor globally Lipschitz continuous such as the Lotka-Volterra model. We also give some examples and simulations.
我们考虑一类具有时滞的Cohen-Grossberg神经网络。我们证明了平衡点的存在性和全局渐近稳定性,并估计了存在区域。此外,我们表明,如果放大函数满足发散条件,具有正初始数据的神经网络轨迹将停留在正区域。我们还为更一般的网络建立了全局吸引紧集的存在性。我们根据生理和生物模型中的网络参数明确估计了这个紧集。我们的结果可以应用于具有广泛激活函数的神经网络,这些激活函数既无界也不是全局Lipschitz连续的,例如Lotka-Volterra模型。我们还给出了一些例子和模拟。