McCrossan Zoe A, Lewis Anthony, Panaghie Gianina, Jordan Peter N, Christini David J, Lerner Daniel J, Abbott Geoffrey W
Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.
J Neurosci. 2003 Sep 3;23(22):8077-91. doi: 10.1523/JNEUROSCI.23-22-08077.2003.
Delayed rectifier potassium current diversity and regulation are essential for signal processing and integration in neuronal circuits. Here, we investigated a neuronal role for MinK-related peptides (MiRPs), membrane-spanning modulatory subunits that generate phenotypic diversity in cardiac potassium channels. Native coimmunoprecipitation from rat brain membranes identified two novel potassium channel complexes, MiRP2-Kv2.1 and MiRP2-Kv3.1b. MiRP2 reduces the current density of both channels, slows Kv3.1b activation, and slows both activation and deactivation of Kv2.1. Altering native MiRP2 expression levels by RNAi gene silencing or cDNA transfection toggles the magnitude and kinetics of endogenous delayed rectifier currents in PC12 cells and hippocampal neurons. Computer simulations predict that the slower gating of Kv3.1b in complexes with MiRP2 will broaden action potentials and lower sustainable firing frequency. Thus, MiRP2, unlike other known neuronal beta subunits, provides a mechanism for influence over multiple delayed rectifier potassium currents in mammalian CNS via modulation of alpha subunits from structurally and kinetically distinct subfamilies.
延迟整流钾电流的多样性和调节对于神经回路中的信号处理和整合至关重要。在此,我们研究了MinK相关肽(MiRPs)在神经元中的作用,MiRPs是跨膜调节亚基,可在心脏钾通道中产生表型多样性。从大鼠脑膜进行的天然免疫共沉淀鉴定出两种新型钾通道复合物,即MiRP2-Kv2.1和MiRP2-Kv3.1b。MiRP2降低了两种通道的电流密度,减缓了Kv3.1b的激活,并减缓了Kv2.1的激活和失活。通过RNAi基因沉默或cDNA转染改变天然MiRP2的表达水平,可改变PC12细胞和海马神经元中内源性延迟整流电流的大小和动力学。计算机模拟预测,与MiRP2形成复合物的Kv3.1b门控较慢,将使动作电位变宽并降低可持续放电频率。因此,与其他已知的神经元β亚基不同,MiRP2通过调节结构和动力学不同亚家族的α亚基,为影响哺乳动物中枢神经系统中的多种延迟整流钾电流提供了一种机制。