Cui Chenxi, Zhao Lu, Kermani Ali A, Du Shuzong, Pipatpolkai Tanadet, Jiang Meiqin, Chittori Sagar, Tan Yong Zi, Shi Jingyi, Delemotte Lucie, Cui Jianmin, Sun Ji
Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
Biomedical Engineering at Washington University in St. Louis, St. Louis, MO, USA.
Cell Res. 2025 Jul 31. doi: 10.1038/s41422-025-01152-1.
KCNQ1 potassium channels are essential for physiological processes such as cardiac rhythm and intestinal chloride secretion. KCNE family subunits (KCNE1-5) associate with KCNQ1, conferring distinct properties across various tissues. KCNQ1 activation requires membrane depolarization and phosphatidylinositol 4,5-bisphosphate (PIP2) whose cellular levels are controlled by Gαq-coupled GPCR activation. While modulation of KCNQ1's voltage-dependent activation by KCNE1/3 is well-characterized, their effects on PIP2-dependent gating of KCNQ1 via GPCR signaling remain less understood. Here we resolved structures of KCNQ1-KCNE1 and reassessed the reported KCNQ1-KCNE3 structures with and without PIP2. We revealed that KCNQ1-KCNE1/3 complexes feature two PIP2-binding sites, with KCNE1/3 contributing to a previously overlooked, uncharacterized site involving residues critical for coupling voltage sensor and pore domains. Via this site, KCNE1 and KCNE3 distinctly modulate the PIP2-dependent gating, in addition to the voltage sensitivity, of KCNQ1. Consequently, KCNE3 converts KCNQ1 into a voltage-insensitive PIP2-gated channel governed by GPCR signaling to maintain ion homeostasis in non-excitable cells. KCNE1, by significantly enhancing KCNQ1's PIP2 affinity and resistance to GPCR regulation, forms predominantly voltage-gated channels with KCNQ1 for conducting the slow-delayed rectifier current in excitable cardiac cells. Our study highlights how KCNE1/3 modulates KCNQ1 gating in different cellular contexts, providing insights into tissue-specifically targeting multi-functional channels.
KCNQ1钾通道对于诸如心律和肠道氯分泌等生理过程至关重要。KCNE家族亚基(KCNE1 - 5)与KCNQ1相互作用,赋予不同组织独特的特性。KCNQ1的激活需要膜去极化和磷脂酰肌醇4,5 - 二磷酸(PIP2),其细胞水平受Gαq偶联的GPCR激活调控。虽然KCNE1/3对KCNQ1电压依赖性激活的调节已得到充分表征,但它们通过GPCR信号传导对KCNQ1的PIP2依赖性门控的影响仍知之甚少。在这里,我们解析了KCNQ1 - KCNE1的结构,并重新评估了报道的有或没有PIP2的KCNQ1 - KCNE3结构。我们发现KCNQ1 - KCNE1/3复合物具有两个PIP2结合位点,KCNE1/3促成了一个先前被忽视、未被表征的位点,该位点涉及对电压传感器和孔结构域耦合至关重要的残基。通过这个位点,KCNE1和KCNE3除了调节KCNQ1的电压敏感性外,还能明显调节其PIP2依赖性门控。因此,KCNE3将KCNQ1转化为一个对电压不敏感的PIP2门控通道,由GPCR信号传导控制,以维持非兴奋性细胞中的离子稳态。KCNE1通过显著增强KCNQ1的PIP2亲和力和对GPCR调节的抗性,与KCNQ1形成主要的电压门控通道,用于在兴奋性心脏细胞中传导缓慢延迟整流电流。我们的研究突出了KCNE1/3在不同细胞环境中如何调节KCNQ1门控,为组织特异性靶向多功能通道提供了见解。