Suppr超能文献

13C核磁共振分析揭示了在一种克隆胰腺β细胞系中L-谷氨酰胺代谢、D-葡萄糖代谢与γ-谷氨酰循环活性之间的联系。

13C NMR analysis reveals a link between L-glutamine metabolism, D-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line.

作者信息

Brennan L, Corless M, Hewage C, Malthouse J P G, McClenaghan N H, Flatt P R, Newsholme P

机构信息

Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Diabetologia. 2003 Nov;46(11):1512-21. doi: 10.1007/s00125-003-1184-7. Epub 2003 Sep 4.

Abstract

AIMS/HYPOTHESIS: Pancreatic islet cells and clonal beta-cell lines can metabolise L-glutamine at high rates. The pathway of L-glutamine metabolism has traditionally been described as L-glutamine-->L-glutamate-->2-oxoglutarate-->oxidation in TCA cycle following conversion to pyruvate. Controversially, the metabolism of D-glucose to L-glutamate in beta cells is not widely accepted. However, L-glutamate has been proposed to be a stimulation-secretion coupling factor in glucose-induced insulin secretion. We aimed to investigate the metabolism of glutamine and glucose by using (13)C NMR analysis.

METHODS

BRIN-BD11 cells were incubated in the presence of 16.7 mmol/l [1-(13)C]glucose, 2 mmol/l [2-(13)C]L-glycine or 2 mmol/l [1,2-(13)C]glutamine in the presence or absence of other amino acids or inhibitors. After an incubation period the cellular metabolites were extracted using a PCA extract procedure. After neutralisation, the extracts were prepared for analysis using (13)C-NMR spectroscopy.

RESULTS

Using (13)C NMR analysis we have shown that L-glutamine could be metabolised in BRIN-BD11 cells via reactions constituting part of the gamma-glutamyl cycle producing glutathione. Moderate or high activities of the enzymes required for these pathways of metabolism including glutaminase, gamma-glutamyltransferase and gamma-glutamylcysteine synthetase were observed. We additionally report significant D-glucose metabolism to L-glutamate. Addition of the aminotransferase inhibitor, aminooxyacetate, attenuated L-glutamate production from D-glucose.

CONCLUSION/INTERPRETATION: We propose that L-glutamine metabolism is important in the beta cell for generation of stimulus-secretion coupling factors, precursors of glutathione synthesis and for supplying carbon for oxidation in the TCA cycle. D-glucose, under appropriate conditions, can be converted to L-glutamate via an aminotransferase catalysed step.

摘要

目的/假设:胰岛细胞和克隆β细胞系能够高速代谢L-谷氨酰胺。传统上,L-谷氨酰胺的代谢途径被描述为L-谷氨酰胺→L-谷氨酸→2-氧代戊二酸→转化为丙酮酸后进入三羧酸循环氧化。有争议的是,β细胞中D-葡萄糖向L-谷氨酸的代谢尚未被广泛接受。然而,L-谷氨酸已被认为是葡萄糖诱导胰岛素分泌中的刺激-分泌偶联因子。我们旨在通过使用(13)C NMR分析来研究谷氨酰胺和葡萄糖的代谢。

方法

将BRIN-BD11细胞在存在或不存在其他氨基酸或抑制剂的情况下,于16.7 mmol/l [1-(13)C]葡萄糖、2 mmol/l [2-(13)C]L-甘氨酸或2 mmol/l [1,2-(13)C]谷氨酰胺存在下孵育。孵育期后,使用PCA提取程序提取细胞代谢物。中和后,将提取物制备用于(13)C-NMR光谱分析。

结果

使用(13)C NMR分析,我们已表明L-谷氨酰胺可在BRIN-BD11细胞中通过构成γ-谷氨酰循环一部分的反应进行代谢,产生谷胱甘肽。观察到这些代谢途径所需的酶(包括谷氨酰胺酶、γ-谷氨酰转移酶和γ-谷氨酰半胱氨酸合成酶)具有中等或高活性。我们还报告了D-葡萄糖向L-谷氨酸的显著代谢。添加转氨酶抑制剂氨基氧乙酸可减弱D-葡萄糖产生L-谷氨酸的过程。

结论/解读:我们提出L-谷氨酰胺代谢在β细胞中对于刺激-分泌偶联因子的产生、谷胱甘肽合成的前体以及为三羧酸循环中的氧化提供碳源很重要。在适当条件下,D-葡萄糖可通过转氨酶催化步骤转化为L-谷氨酸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验