Suppr超能文献

一种用于人口密度方程的简单且稳定的数值解。

A simple and stable numerical solution for the population density equation.

作者信息

de Kamps M

机构信息

Section Cognitive Psychology, Faculty of Social Sciences, Leiden University, 2333 AK Leiden, The Netherlands.

出版信息

Neural Comput. 2003 Sep;15(9):2129-46. doi: 10.1162/089976603322297322.

Abstract

A population density description of large populations of neurons has generated considerable interest recently. The evolution in time of the population density is determined by a partial differential equation (PDE). Most of the algorithms proposed to solve this PDE have used finite difference schemes. Here, I use the method of characteristics to reduce the PDE to a set of ordinary differential equations, which are easy to solve. The method is applied to leaky-integrate-and-fire neurons and produces an algorithm that is efficient and yields a stable and manifestly nonnegative density. Contrary to algorithms based directly on finite difference schemes, this algorithm is insensitive to large density gradients, which may occur during evolution of the density.

摘要

最近,对大量神经元群体的种群密度描述引起了相当大的关注。种群密度随时间的演化由一个偏微分方程(PDE)决定。为求解这个偏微分方程而提出的大多数算法都使用了有限差分格式。在这里,我使用特征线法将偏微分方程简化为一组常微分方程,这些方程易于求解。该方法应用于泄漏积分发放神经元,并产生了一种高效的算法,该算法能产生稳定且明显非负的密度。与直接基于有限差分格式的算法不同,该算法对密度演化过程中可能出现的大密度梯度不敏感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验