Suppr超能文献

实现图形模型的皮质回路。

Cortical circuitry implementing graphical models.

作者信息

Litvak Shai, Ullman Shimon

机构信息

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Neural Comput. 2009 Nov;21(11):3010-56. doi: 10.1162/neco.2009.05-08-783.

Abstract

In this letter, we develop and simulate a large-scale network of spiking neurons that approximates the inference computations performed by graphical models. Unlike previous related schemes, which used sum and product operations in either the log or linear domains, the current model uses an inference scheme based on the sum and maximization operations in the log domain. Simulations show that using these operations, a large-scale circuit, which combines populations of spiking neurons as basic building blocks, is capable of finding close approximations to the full mathematical computations performed by graphical models within a few hundred milliseconds. The circuit is general in the sense that it can be wired for any graph structure, it supports multistate variables, and it uses standard leaky integrate-and-fire neuronal units. Following previous work, which proposed relations between graphical models and the large-scale cortical anatomy, we focus on the cortical microcircuitry and propose how anatomical and physiological aspects of the local circuitry may map onto elements of the graphical model implementation. We discuss in particular the roles of three major types of inhibitory neurons (small fast-spiking basket cells, large layer 2/3 basket cells, and double-bouquet neurons), subpopulations of strongly interconnected neurons with their unique connectivity patterns in different cortical layers, and the possible role of minicolumns in the realization of the population-based maximum operation.

摘要

在这封信中,我们开发并模拟了一个大规模的脉冲神经元网络,该网络近似于图形模型执行的推理计算。与以前的相关方案不同,以前的方案在对数域或线性域中使用求和与乘积运算,而当前模型使用基于对数域中求和与最大化运算的推理方案。模拟表明,使用这些运算,一个以脉冲神经元群体作为基本构建块的大规模电路能够在几百毫秒内找到与图形模型执行的完整数学计算非常接近的近似值。该电路具有通用性,因为它可以针对任何图形结构进行布线,支持多状态变量,并使用标准的泄漏积分发放神经元单元。继先前提出图形模型与大规模皮质解剖结构之间关系的工作之后,我们专注于皮质微电路,并提出局部电路的解剖学和生理学方面可能如何映射到图形模型实现的元素上。我们特别讨论了三种主要类型的抑制性神经元(小型快速发放篮状细胞、大型第2/3层篮状细胞和双花束神经元)的作用,不同皮质层中具有独特连接模式的强相互连接神经元亚群,以及小柱在基于群体的最大运算实现中的可能作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验