Im Wonpil, Lee Michael S, Brooks Charles L
Department of Molecular Biology (TPC6), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
J Comput Chem. 2003 Nov 15;24(14):1691-702. doi: 10.1002/jcc.10321.
Based on recent developments in generalized Born (GB) theory that employ rapid volume integration schemes (M. S. Lee, F. R. Salabury, Jr., and C. L. Brooks III, J Chem Phys 2002, 116, 10606) we have recast the calculation of the self-electrostatic solvation energy to utilize a simple smoothing function at the dielectric boundary. The present GB model is formulated in this manner to provide consistency with the Poisson-Boltzmann (PB) theory previously developed to yield numerically stable electrostatic solvation forces based on finite-difference methods (W. Im, D. Beglov, and B. Roux, Comp Phys Commun 1998, 111, 59). Our comparisons show that the present GB model is indeed an efficient and accurate approach to reproduce corresponding PB solvation energies and forces. With only two adjustable parameters--a(0) to modulate the Coulomb field term, and a(1) to include a correction term beyond Coulomb field--the PB solvation energies are reproduced within 1% error on average for a variety of proteins. Detailed analysis shows that the PB energy can be reproduced within 2% absolute error with a confidence of about 95%. In addition, the solvent-exposed surface area of a biomolecule, as commonly used in calculations of the nonpolar solvation energy, can be calculated accurately and efficiently using the simple smoothing function and the volume integration method. Our implicit solvent GB calculations are about 4.5 times slower than the corresponding vacuum calculations. Using the simple smoothing function makes the present GB model roughly three times faster than GB models, which attempt to mimic the Lee-Richards molecular volume.
基于广义玻恩(GB)理论的最新进展,该理论采用了快速体积积分方案(M. S. 李、F. R. 萨拉伯里、小C. L. 布鲁克斯三世,《化学物理杂志》2002年,116卷,10606页),我们重新进行了自静电溶剂化能的计算,以在介电边界处使用一个简单的平滑函数。当前的GB模型就是以这种方式构建的,以便与之前基于有限差分法开发的泊松-玻尔兹曼(PB)理论保持一致,该理论能产生数值稳定的静电溶剂化力(W. 伊姆、D. 贝格洛夫、B. 鲁克斯,《计算机物理通讯》1998年,111卷,59页)。我们的比较表明,当前的GB模型确实是一种高效且准确的方法,能够重现相应的PB溶剂化能和力。只需两个可调参数——用于调节库仑场项的a(0),以及用于包含库仑场之外校正项的a(1)——对于各种蛋白质,PB溶剂化能的重现平均误差在1%以内。详细分析表明,PB能量能够以约95%的置信度在2%的绝对误差内被重现。此外,生物分子的溶剂暴露表面积,常用于非极性溶剂化能的计算,可使用简单的平滑函数和体积积分法准确且高效地计算出来。我们的隐式溶剂GB计算比相应的真空计算慢约4.5倍。使用简单的平滑函数使当前的GB模型比试图模仿李-理查兹分子体积的GB模型快约三倍。