Suppr超能文献

哺乳动物跳跃步态中腿部弹簧的缩放比例。

Scaling of the spring in the leg during bouncing gaits of mammals.

作者信息

Lee David V, Isaacs Michael R, Higgins Trevor E, Biewener Andrew A, McGowan Craig P

机构信息

*School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Concord Field Station, Harvard University, Bedford, MA 01730, USA; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA

*School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Concord Field Station, Harvard University, Bedford, MA 01730, USA; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.

出版信息

Integr Comp Biol. 2014 Dec;54(6):1099-108. doi: 10.1093/icb/icu114. Epub 2014 Oct 9.

Abstract

Trotting, bipedal running, and especially hopping have long been considered the principal bouncing gaits of legged animals. We use the radial-leg spring constant [Formula: see text] to quantify the stiffness of the physical leg during bouncing gaits. The radial-leg is modeled as an extensible strut between the hip and the ground and [Formula: see text] is determined from the force and deflection of this strut in each instance of stance. A Hookean spring is modeled in-series with a linear actuator and the stiffness of this spring [Formula: see text] is determined by minimizing the work of the actuator while reproducing the measured force-deflection dynamics of an individual leg during trotting or running, and of the paired legs during hopping. Prior studies have estimated leg stiffness using [Formula: see text], a metric that imagines a virtual-leg connected to the center of mass. While [Formula: see text] has been applied extensively in human and comparative biomechanics, we show that [Formula: see text] more accurately models the spring in the leg when actuation is allowed, as is the case in biological and robotic systems. Our allometric analysis of [Formula: see text] in the kangaroo rat, tammar wallaby, dog, goat, and human during hopping, trotting, or running show that [Formula: see text] scales as body mass to the two-third power, which is consistent with the predictions of dynamic similarity and with the scaling of [Formula: see text]. Hence, two-third scaling of locomotor spring constants among mammals is supported by both the radial-leg and virtual-leg models, yet the scaling of [Formula: see text] emerges from work-minimization in the radial-leg model instead of being a defacto result of the ratio of force to length used to compute [Formula: see text]. Another key distinction between the virtual-leg and radial-leg is that [Formula: see text] is substantially greater than [Formula: see text], as indicated by a 30-37% greater scaling coefficient for [Formula: see text]. We also show that the legs of goats are on average twice as stiff as those of dogs of the same mass and that goats increase the stiffness of their legs, in part, by more nearly aligning their distal limb-joints with the ground reaction force vector. This study is the first allometric analysis of leg spring constants in two decades. By means of an independent model, our findings reinforce the two-third scaling of spring constants with body mass, while showing that springs in-series with actuators are stiffer than those predicted by energy-conservative models of the leg.

摘要

长期以来,小跑、两足奔跑,尤其是跳跃一直被视为有腿动物的主要弹跳步态。我们使用径向腿部弹簧常数[公式:见正文]来量化弹跳步态中物理腿部的刚度。径向腿被建模为髋部与地面之间的可伸展支柱,并且[公式:见正文]由该支柱在每次站立时的力和挠度确定。一个胡克弹簧与一个线性致动器串联建模,并且该弹簧的刚度[公式:见正文]通过在再现小跑或奔跑时单个腿部以及跳跃时成对腿部的测量力 - 挠度动态的同时最小化致动器的功来确定。先前的研究使用[公式:见正文]估计腿部刚度,这是一种设想连接到质心的虚拟腿的度量。虽然[公式:见正文]已在人类和比较生物力学中广泛应用,但我们表明,当允许驱动时,如在生物和机器人系统中那样,[公式:见正文]能更准确地对腿部的弹簧进行建模。我们对袋鼠、短尾矮袋鼠、狗、山羊和人类在跳跃、小跑或奔跑时的[公式:见正文]进行的异速生长分析表明,[公式:见正文]与体重的三分之二次幂成比例,这与动态相似性的预测以及[公式:见正文]的比例关系一致。因此,径向腿模型和虚拟腿模型都支持哺乳动物之间运动弹簧常数的三分之二次幂比例关系,然而[公式:见正文]的比例关系源自径向腿模型中的功最小化,而不是用于计算[公式:见正文]的力与长度之比的实际结果。虚拟腿和径向腿之间的另一个关键区别在于,[公式:见正文]显著大于[公式:见正文],如[公式:见正文]的比例系数大30 - 37%所示。我们还表明,相同体重的山羊腿部平均刚度是狗腿部的两倍,并且山羊部分地通过使其远端肢体关节更接近地与地面反作用力矢量对齐来增加腿部的刚度。这项研究是二十年来对腿部弹簧常数的首次异速生长分析。通过一个独立模型,我们的研究结果强化了弹簧常数与体重的三分之二次幂比例关系,同时表明与致动器串联的弹簧比腿部能量守恒模型预测的更硬。

相似文献

1
Scaling of the spring in the leg during bouncing gaits of mammals.
Integr Comp Biol. 2014 Dec;54(6):1099-108. doi: 10.1093/icb/icu114. Epub 2014 Oct 9.
3
BigDog-inspired studies in the locomotion of goats and dogs.
Integr Comp Biol. 2011 Jul;51(1):190-202. doi: 10.1093/icb/icr061. Epub 2011 Jun 9.
4
6
How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
J Theor Biol. 2008 Nov 7;255(1):1-7. doi: 10.1016/j.jtbi.2008.06.034. Epub 2008 Jul 15.
7
Running springs: speed and animal size.
J Exp Biol. 1993 Dec;185:71-86. doi: 10.1242/jeb.185.1.71.
8
Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
J Exp Zool A Comp Exp Biol. 2006 Nov 1;305(11):899-911. doi: 10.1002/jez.a.334.
9
Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.
J Exp Biol. 2018 May 22;221(Pt 10):jeb152538. doi: 10.1242/jeb.152538.
10
Stance leg control: variation of leg parameters supports stable hopping.
Bioinspir Biomim. 2012 Mar;7(1):016006. doi: 10.1088/1748-3182/7/1/016006. Epub 2011 Dec 19.

引用本文的文献

1
Bouncing bones-ancient wisdom meets modern science in a new take on locomotion.
Front Physiol. 2024 Sep 30;15:1432410. doi: 10.3389/fphys.2024.1432410. eCollection 2024.
2
Competing Models of Work in Quadrupedal Walking: Center of Mass Work is Insufficient to Explain Stereotypical Gait.
Front Bioeng Biotechnol. 2022 May 12;10:826336. doi: 10.3389/fbioe.2022.826336. eCollection 2022.
3
Muscle Actuators, Not Springs, Drive Maximal Effort Human Locomotor Performance.
J Sports Sci Med. 2021 Oct 1;20(4):766-777. doi: 10.52082/jssm.2021.766. eCollection 2021 Dec.
4
The evolutionary biomechanics of locomotor function in giant land animals.
J Exp Biol. 2021 Jun 1;224(11). doi: 10.1242/jeb.217463. Epub 2021 Jun 8.
6
The foot and ankle structures reveal emergent properties analogous to passive springs during human walking.
PLoS One. 2019 Jun 7;14(6):e0218047. doi: 10.1371/journal.pone.0218047. eCollection 2019.
7
Goats decrease hindlimb stiffness when walking over compliant surfaces.
J Exp Biol. 2019 May 23;222(Pt 10):jeb198325. doi: 10.1242/jeb.198325.
8
Body proportions for the facilitation of walking, running and flying: the case of partridges.
BMC Evol Biol. 2018 Nov 26;18(1):176. doi: 10.1186/s12862-018-1295-x.
9
Mixed gaits in small avian terrestrial locomotion.
Sci Rep. 2015 Sep 3;5:13636. doi: 10.1038/srep13636.

本文引用的文献

1
Compliant ankle function results in landing-take off asymmetry in legged locomotion.
J Theor Biol. 2014 May 21;349:44-9. doi: 10.1016/j.jtbi.2014.01.029. Epub 2014 Jan 31.
2
Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix).
J Exp Biol. 2013 Oct 15;216(Pt 20):3906-16. doi: 10.1242/jeb.085399. Epub 2013 Jul 18.
3
Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus).
Nat Biotechnol. 2013 Feb;31(2):135-41. doi: 10.1038/nbt.2478. Epub 2012 Dec 23.
4
Leg stiffness of sprinters using running-specific prostheses.
J R Soc Interface. 2012 Aug 7;9(73):1975-82. doi: 10.1098/rsif.2011.0877. Epub 2012 Feb 15.
5
Effective leg stiffness in running.
J Biomech. 2009 Oct 16;42(14):2400-5. doi: 10.1016/j.jbiomech.2009.06.040. Epub 2009 Aug 3.
6
Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running.
J Appl Physiol (1985). 2008 Jan;104(1):130-41. doi: 10.1152/japplphysiol.01090.2006. Epub 2007 Oct 18.
7
The landing-take-off asymmetry in human running.
J Exp Biol. 2006 Oct;209(Pt 20):4051-60. doi: 10.1242/jeb.02344.
8
Effects of mass distribution on the mechanics of level trotting in dogs.
J Exp Biol. 2004 Apr;207(Pt 10):1715-28. doi: 10.1242/jeb.00947.
9
Running springs: speed and animal size.
J Exp Biol. 1993 Dec;185:71-86. doi: 10.1242/jeb.185.1.71.
10
Allometry of muscle, tendon, and elastic energy storage capacity in mammals.
Am J Physiol. 1994 Mar;266(3 Pt 2):R1022-31. doi: 10.1152/ajpregu.1994.266.3.R1022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验