Li Shumin, Li Xun, Rozanski George J
Department of Physiology and Biophysics, University of Nebraska College of Medicine, 984575 Nebraska Medical Center, Omaha, NE 68198-4575, USA.
J Mol Cell Cardiol. 2003 Sep;35(9):1145-52. doi: 10.1016/s0022-2828(03)00230-x.
Reduced glutathione (GSH) is an essential, multifunctional tripepetide that controls redox-sensitive cellular processes, but its regulation in the heart is poorly understood. The present study used a pharmocological model of GSH depletion to examine cellular mechanisms controlling cardiac GSH. Inhibition of GSH metabolism was elicited in normal rats by daily injections of buthionine sulfoximine (BSO), a blocker of gamma-glutamylcysteine synthetase, plus 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. After 3 d of BSO/BCNU treatment, intracellular [GSH] was measured in isolated-ventricular myocytes by fluorescence microscopy using the probe monochlorobimane. Basal [GSH] in left-ventricular myocytes from BSO/BCNU-treated rats (2.0 +/- 0.05 amol/microm(3), n = 146) was 50% less than control (4.0 +/- 0.13 amol/microm(3), n = 116; P < 0.05). Incubation of myocytes from BSO/BCNU rats with 0.1 microM insulin normalized [GSH] after a delay of 3-4 h (3.6 +/- 0.29 amol/microm(3), n = 66). This effect of insulin was blocked by pre-treating myocytes with cycloheximide. A protein tyrosine phosphatase inhibitor, bis-peroxovanadium-1,10-phenanthroline (bpV(phen), 1 microM), elicited a similar effect as insulin, while neither agent altered [GSH] in myocytes from control rats. Moreover, the effect of insulin and bpV(phen) to up-regulate GSH was blocked by inhibitors of PI 3-kinase (wortmannin, LY294002), MEK (PD98059) and p38 MAP kinases (SB203580). These data suggest that the insulin-signaling cascade regulates [GSH] in ventricular myocytes by a coordinated activation of PI 3-kinase and MAP kinase pathways. These signaling mechanisms may play essential roles in controlling intracellular redox state and normal function of cardiac myocytes.
还原型谷胱甘肽(GSH)是一种重要的多功能三肽,可控制对氧化还原敏感的细胞过程,但其在心脏中的调节机制尚不清楚。本研究使用GSH耗竭的药理学模型来研究控制心脏GSH的细胞机制。通过每日注射丁硫氨酸亚砜胺(BSO,γ-谷氨酰半胱氨酸合成酶的阻滞剂)加1,3-双(2-氯乙基)-1-亚硝基脲(BCNU,谷胱甘肽还原酶的抑制剂),在正常大鼠中引发GSH代谢的抑制。在BSO/BCNU治疗3天后,使用探针单氯双马来酰胺通过荧光显微镜在分离的心室肌细胞中测量细胞内[GSH]。来自BSO/BCNU处理大鼠的左心室肌细胞中的基础[GSH](2.0±0.05 amol/μm³,n = 146)比对照(4.0±0.13 amol/μm³,n = 116;P <0.05)低50%。将来自BSO/BCNU大鼠的心肌细胞与0.1μM胰岛素一起孵育3-4小时后,[GSH]恢复正常(3.6±0.29 amol/μm³,n = 66)。胰岛素的这种作用被用放线菌酮预处理心肌细胞所阻断。一种蛋白酪氨酸磷酸酶抑制剂双过氧钒-1,10-菲咯啉(bpV(phen),1μM)产生与胰岛素类似的作用,而这两种药物均未改变对照大鼠心肌细胞中的[GSH]。此外,胰岛素和bpV(phen)上调GSH的作用被PI 3-激酶(渥曼青霉素,LY294002)、MEK(PD98059)和p38丝裂原活化蛋白激酶(SB203580)的抑制剂所阻断。这些数据表明,胰岛素信号级联通过PI 3-激酶和丝裂原活化蛋白激酶途径的协同激活来调节心室肌细胞中的[GSH]。这些信号传导机制可能在控制心肌细胞内的氧化还原状态和正常功能中起重要作用。