Suppr超能文献

谷胱甘肽合成

Glutathione synthesis.

作者信息

Lu Shelly C

机构信息

Keck School of Medicine USC, Los Angeles, CA 90033, USA.

出版信息

Biochim Biophys Acta. 2013 May;1830(5):3143-53. doi: 10.1016/j.bbagen.2012.09.008. Epub 2012 Sep 17.

Abstract

BACKGROUND

Glutathione (GSH) is present in all mammalian tissues as the most abundant non-protein thiol that defends against oxidative stress. GSH is also a key determinant of redox signaling, vital in detoxification of xenobiotics, and regulates cell proliferation, apoptosis, immune function, and fibrogenesis. Biosynthesis of GSH occurs in the cytosol in a tightly regulated manner. Key determinants of GSH synthesis are the availability of the sulfur amino acid precursor, cysteine, and the activity of the rate-limiting enzyme, glutamate cysteine ligase (GCL), which is composed of a catalytic (GCLC) and a modifier (GCLM) subunit. The second enzyme of GSH synthesis is GSH synthetase (GS).

SCOPE OF REVIEW

This review summarizes key functions of GSH and focuses on factors that regulate the biosynthesis of GSH, including pathological conditions where GSH synthesis is dysregulated.

MAJOR CONCLUSIONS

GCL subunits and GS are regulated at multiple levels and often in a coordinated manner. Key transcription factors that regulate the expression of these genes include NF-E2 related factor 2 (Nrf2) via the antioxidant response element (ARE), AP-1, and nuclear factor kappa B (NFκB). There is increasing evidence that dysregulation of GSH synthesis contributes to the pathogenesis of many pathological conditions. These include diabetes mellitus, pulmonary and liver fibrosis, alcoholic liver disease, cholestatic liver injury, endotoxemia and drug-resistant tumor cells.

GENERAL SIGNIFICANCE

GSH is a key antioxidant that also modulates diverse cellular processes. A better understanding of how its synthesis is regulated and dysregulated in disease states may lead to improvement in the treatment of these disorders. This article is part of a Special Issue entitled Cellular functions of glutathione.

摘要

背景

谷胱甘肽(GSH)作为最丰富的非蛋白硫醇存在于所有哺乳动物组织中,可抵御氧化应激。GSH也是氧化还原信号传导的关键决定因素,在异生物解毒中至关重要,并调节细胞增殖、凋亡、免疫功能和纤维生成。GSH的生物合成在胞质溶胶中以严格调控的方式进行。GSH合成的关键决定因素是硫氨基酸前体半胱氨酸的可用性以及限速酶谷氨酸半胱氨酸连接酶(GCL)的活性,该酶由催化亚基(GCLC)和调节亚基(GCLM)组成。GSH合成的第二种酶是谷胱甘肽合成酶(GS)。

综述范围

本综述总结了GSH的关键功能,并重点关注调节GSH生物合成的因素,包括GSH合成失调的病理状况。

主要结论

GCL亚基和GS在多个水平上受到调节,且通常以协调的方式进行。调节这些基因表达的关键转录因子包括通过抗氧化反应元件(ARE)的NF-E2相关因子2(Nrf2)、活化蛋白-1(AP-1)和核因子κB(NFκB)。越来越多的证据表明,GSH合成失调促成了许多病理状况的发病机制。这些状况包括糖尿病、肺纤维化和肝纤维化、酒精性肝病、胆汁淤积性肝损伤、内毒素血症和耐药肿瘤细胞。

普遍意义

GSH是一种关键的抗氧化剂,还可调节多种细胞过程。更好地了解其在疾病状态下的合成如何受到调节和失调,可能会改善这些疾病的治疗。本文是名为“谷胱甘肽的细胞功能”的特刊的一部分。

相似文献

1
Glutathione synthesis.谷胱甘肽合成
Biochim Biophys Acta. 2013 May;1830(5):3143-53. doi: 10.1016/j.bbagen.2012.09.008. Epub 2012 Sep 17.
2
Regulation of glutathione synthesis.谷胱甘肽合成的调节
Mol Aspects Med. 2009 Feb-Apr;30(1-2):42-59. doi: 10.1016/j.mam.2008.05.005. Epub 2008 Jun 14.
7
First evidence of glutathione metabolism in Leptospira interrogans.首次证明钩端螺旋体中谷胱甘肽代谢的存在。
Free Radic Biol Med. 2019 Nov 1;143:366-374. doi: 10.1016/j.freeradbiomed.2019.08.028. Epub 2019 Aug 26.

引用本文的文献

本文引用的文献

8
A nuclear glutathione cycle within the cell cycle.细胞周期中的核谷胱甘肽循环。
Biochem J. 2010 Oct 15;431(2):169-78. doi: 10.1042/BJ20100409.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验