Xie Z, Currie K P M, Cahill A L, Fox A P
Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois 60637, USA.
J Neurophysiol. 2003 Dec;90(6):3828-37. doi: 10.1152/jn.00617.2003. Epub 2003 Sep 10.
GABA is the primary inhibitory neurotransmitter in the adult mammalian brain. However, in neonatal animals, activation of Cl(-)-permeable GABA receptors is excitatory and appears to depend on the expression of a Na(+)-K(+)-2Cl- cotransporter (NKCC) that elevates intracellular Cl- levels, leading to a depolarized Cl- equilibrium potential (ECl). The change from excitation to inhibition appears to involve the expression of the K+/Cl- co-transporter, KCC2, which lowers intracellular Cl- levels resulting in a hyperpolarized ECl. In this study, we show that bovine chromaffin cells from 4- to 5-mo-old animals are excited by GABA. Activation of GABAA receptors depolarizes the cells, opens voltage-dependent Ca2+ channels, elevates [Ca2+]i, and promotes the release of catecholamines. Blockade of voltage-dependent Ca2+ channels prevents the elevation of [Ca2+]i by GABA. The extrapolated anion reversal potential in these cells is approximately -28 mV, indicating a resting intracellular anion concentration of approximately 50 mM. Expression of KCC2 protein was not detected in the juvenile chromaffin cells. In contrast, clear expression of NKCC1 was observed. Blockade of NKCC1 should reduce the intracellular Cl- concentration and hyperpolarize ECl. Bumetanide, an NKCC1 blocker, reduced the elevation of [Ca2+]i by GABA. In some cells, activation of GABAA receptors inhibits responses to excitatory neurotransmitters, even though GABA itself is depolarizing. Co-activation of cholinergic and GABAA receptors in chromaffin cells produced elevations in [Ca2+]i that were comparable to those produced by cholinergic receptors alone. Our data showing the selective expression of chloride co-transporters and the resulting strongly depolarized anion reversal potential may help explain how activation of GABAA receptors causes sufficient excitation to elicit catecholamine release from chromaffin cells.
γ-氨基丁酸(GABA)是成年哺乳动物大脑中的主要抑制性神经递质。然而,在新生动物中,氯离子通透型GABA受体的激活具有兴奋性,这似乎取决于钠钾氯协同转运蛋白(NKCC)的表达,该蛋白会提高细胞内氯离子水平,导致氯离子平衡电位(ECl)去极化。从兴奋到抑制的转变似乎涉及钾离子/氯离子协同转运蛋白KCC2的表达,它会降低细胞内氯离子水平,导致ECl超极化。在本研究中,我们发现4至5月龄动物的牛嗜铬细胞会被GABA兴奋。GABAA受体的激活使细胞去极化,打开电压依赖性钙通道,提高细胞内钙离子浓度([Ca2+]i),并促进儿茶酚胺的释放。阻断电压依赖性钙通道可防止GABA引起的[Ca2+]i升高。这些细胞中外推的阴离子反转电位约为-28 mV,表明静息细胞内阴离子浓度约为50 mM。在幼年嗜铬细胞中未检测到KCC2蛋白的表达。相反,观察到NKCC1有明显表达。阻断NKCC1应会降低细胞内氯离子浓度并使ECl超极化。布美他尼是一种NKCC1阻断剂,可降低GABA引起的[Ca2+]i升高。在一些细胞中,即使GABA本身会使细胞去极化,但GABAA受体的激活仍会抑制对兴奋性神经递质的反应。嗜铬细胞中胆碱能和GABAA受体的共同激活所产生的[Ca2+]i升高与仅由胆碱能受体产生的升高相当。我们的数据显示氯离子协同转运蛋白的选择性表达以及由此产生的强烈去极化阴离子反转电位,这可能有助于解释GABAA受体的激活如何引起足够的兴奋,从而引发嗜铬细胞释放儿茶酚胺。