Suppr超能文献

蛋白C途径。

The protein C pathway.

作者信息

Esmon Charles T

机构信息

Howard Hughes Medical Institute, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.

出版信息

Chest. 2003 Sep;124(3 Suppl):26S-32S. doi: 10.1378/chest.124.3_suppl.26s.

Abstract

The protein C anticoagulant pathway serves as a major system for controlling thrombosis, limiting inflammatory responses, and potentially decreasing endothelial cell apoptosis in response to inflammatory cytokines and ischemia. The essential components of the pathway involve thrombin, thrombomodulin, the endothelial cell protein C receptor (EPCR), protein C, and protein S. Thrombomodulin binds thrombin, directly inhibiting its clotting and cell activation potential while at the same time augmenting protein C (and thrombin activatable fibrinolysis inhibitor [TAFI]) activation. Furthermore, thrombin bound to thrombomodulin is inactivated by plasma protease inhibitors > 20 times faster than free thrombin, resulting in increased clearance of thrombin from the circulation. The inhibited thrombin rapidly dissociates from thrombomodulin, regenerating the anticoagulant surface. Thrombomodulin also has direct anti-inflammatory activity, minimizing cytokine formation in the endothelium and decreasing leukocyte-endothelial cell adhesion. EPCR augments protein C activation approximately 20-fold in vivo by binding protein C and presenting it to the thrombin-thrombomodulin activation complex. Activated protein C (APC) retains its ability to bind EPCR, and this complex appears to be involved in some of the cellular signaling mechanisms that down-regulate inflammatory cytokine formation (tumor necrosis factor, interleukin-6). Once APC dissociates from EPCR, it binds to protein S on appropriate cell surfaces where it inactivates factors Va and VIIIa, thereby inhibiting further thrombin generation. Clinical studies reveal that deficiencies of protein C lead to microvascular thrombosis (purpura fulminans). During severe sepsis, a combination of protein C consumption, protein S inactivation, and reduction in activity of the activation complex by oxidation, cytokine-mediated down-regulation, and proteolytic release of the activation components sets in motion conditions that would favor an acquired defect in the protein C pathway, which in turn favors microvascular thrombosis, increased leukocyte adhesion, and increased cytokine formation. APC has been shown clinically to protect patients with severe sepsis. Protein C and thrombomodulin are in early stage clinical trials for this disease, and each has distinct potential advantages and disadvantages relative to APC.

摘要

蛋白C抗凝途径是控制血栓形成、限制炎症反应以及可能减少内皮细胞因炎症细胞因子和局部缺血而发生凋亡的主要系统。该途径的关键成分包括凝血酶、血栓调节蛋白、内皮细胞蛋白C受体(EPCR)、蛋白C和蛋白S。血栓调节蛋白与凝血酶结合,直接抑制其凝血和细胞激活潜能,同时增强蛋白C(以及凝血酶激活的纤维蛋白溶解抑制剂[TAFI])的激活。此外,与血栓调节蛋白结合的凝血酶被血浆蛋白酶抑制剂灭活的速度比游离凝血酶快20多倍,从而导致凝血酶从循环中清除增加。被抑制的凝血酶迅速从血栓调节蛋白上解离,使抗凝表面再生。血栓调节蛋白还具有直接的抗炎活性,可减少内皮细胞中细胞因子的形成并降低白细胞与内皮细胞的黏附。EPCR通过结合蛋白C并将其呈递给凝血酶-血栓调节蛋白激活复合物,在体内将蛋白C的激活增强约20倍。活化蛋白C(APC)保留了与EPCR结合的能力,并且该复合物似乎参与了一些下调炎症细胞因子形成(肿瘤坏死因子、白细胞介素-6)的细胞信号传导机制。一旦APC从EPCR上解离,它就会与适当细胞表面的蛋白S结合,在那里它会灭活因子Va和VIIIa,从而抑制进一步的凝血酶生成。临床研究表明,蛋白C缺乏会导致微血管血栓形成(暴发性紫癜)。在严重脓毒症期间,蛋白C消耗、蛋白S失活以及激活复合物因氧化、细胞因子介导的下调和激活成分的蛋白水解释放而导致活性降低,这些情况共同引发了有利于蛋白C途径获得性缺陷的条件,进而有利于微血管血栓形成、白细胞黏附增加和细胞因子形成增加。临床上已证明APC可保护严重脓毒症患者。蛋白C和血栓调节蛋白针对该疾病正处于早期临床试验阶段,相对于APC,它们各自具有明显的潜在优缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验