Abuagla Hytham Ahmed, Adam Khalid Mohamed, Elangeeb Mohamed E, Ahmed Elsadig Mohamed, Ali Elshazali W, Edris Ali M, MohamedAhmed Abubakr Ali Elamin, Eltieb Elmoiz Idris, Khalid Tarig Babikir Algak, Elamin Bahaeldin K, Osman Hiba Mahgoub Ali, Idris Ebtehal Salih
Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia.
Department of Pathology, College of Medicine, University of Bisha, Bisha, Saudi Arabia.
Front Genet. 2025 Apr 30;16:1580993. doi: 10.3389/fgene.2025.1580993. eCollection 2025.
Thrombosis is a serious vascular disorder influenced by genetic factors, including nonsynonymous single nucleotide polymorphisms (nsSNPs) in the gene, which encodes the endothelial protein C receptor (EPCR). These mutations may disrupt EPCR stability and impair its anticoagulant function, thereby increasing the risk of thrombosis.
We employed a multi-layered computational approach to analyze 217 nsSNPs in the gene. Functional impacts were predicted using Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), Screening for Non-Acceptable Polymorphisms 2 (SNAP2), and Protein Analysis Through Evolutionary Relationships (PANTHER). Disease associations were assessed using Single Nucleotide Polymorphisms and Gene Ontology (SNP&GO) and Predictor of Human Deleterious Single Nucleotide Polymorphisms (PhD-SNP). Protein stability was evaluated using I-Mutant and MUpro, while structural implications were analyzed with Mutation Prediction (MutPred), ConSurf, and Have Our Protein Explained (HOPE). Active binding sites were identified using PyMOL. Finally, 100-nanosecond molecular dynamics (MD) simulations were conducted using GROningen MAchine for Chemical Simulations (GROMACS) to compare structural deviations, flexibility, and solvent interactions between wild-type EPCR and key mutant proteins.
Our integrated analysis identified three high-risk nsSNPs-T174I, N136I, and L168P-that detrimentally affect EPCR function. These variants disrupt critical glycosylation sites, α-helix integrity, and catalytic residues, leading to increased root mean square deviation (RMSD) and root mean square fluctuation (RMSF), reduced hydrogen bonding, and higher solvent-accessible surface area (SASA) in mutants compared to the wild-type. Disease association tools further linked these mutations to an elevated thrombotic risk.
These findings suggest that the identified nsSNPs destabilize EPCR by altering its structural dynamics and reducing its capacity to activate protein C. This provides mechanistic insight into how variation may contribute to thrombotic disorders and highlights the utility of approaches for prioritizing potentially pathogenic variants.
Our study demonstrates that deleterious nsSNPs in the gene can significantly impair EPCR stability and function, thereby increasing susceptibility to thrombosis. These findings provide a foundation for future experimental validation and may inform the development of personalized therapeutic strategies for managing thrombotic disorders.
血栓形成是一种严重的血管疾病,受遗传因素影响,包括内皮蛋白C受体(EPCR)编码基因中的非同义单核苷酸多态性(nsSNP)。这些突变可能破坏EPCR的稳定性并损害其抗凝功能,从而增加血栓形成的风险。
我们采用了一种多层计算方法来分析该基因中的217个nsSNP。使用从耐受中筛选不耐受(SIFT)、多态性表型分析v2(PolyPhen-2)、非可接受多态性筛选2(SNAP2)和通过进化关系进行蛋白质分析(PANTHER)来预测功能影响。使用单核苷酸多态性与基因本体(SNP&GO)和人类有害单核苷酸多态性预测器(PhD-SNP)评估疾病关联。使用I-Mutant和MUpro评估蛋白质稳定性,同时用突变预测(MutPred)、保守性表面分析(ConSurf)和蛋白解析(HOPE)分析结构影响。使用PyMOL识别活性结合位点。最后,使用格罗宁根化学模拟机(GROMACS)进行100纳秒的分子动力学(MD)模拟,以比较野生型EPCR和关键突变蛋白之间的结构偏差、灵活性和溶剂相互作用。
我们的综合分析确定了三个高风险nsSNP——T174I、N136I和L168P——它们对EPCR功能有不利影响。这些变体破坏关键的糖基化位点、α螺旋完整性和催化残基,导致与野生型相比,突变体的均方根偏差(RMSD)和均方根波动(RMSF)增加、氢键减少以及溶剂可及表面积(SASA)增大。疾病关联工具进一步将这些突变与血栓形成风险升高联系起来。
这些发现表明,所鉴定的nsSNP通过改变EPCR的结构动力学并降低其激活蛋白C的能力而使其不稳定。这为该基因变异如何导致血栓形成疾病提供了机制性见解,并突出了利用计算方法对潜在致病变体进行优先级排序的实用性。
我们的研究表明,该基因中的有害nsSNP可显著损害EPCR的稳定性和功能,从而增加对血栓形成的易感性。这些发现为未来的实验验证奠定了基础,并可能为制定治疗血栓形成疾病的个性化治疗策略提供参考。