Blandini F, Greenamyre J T
Laboratory of Functional Neurochemistry, Neurological Institute C. Mondino, Pavia, Italy.
Drugs Today (Barc). 1999 Jun;35(6):473-83. doi: 10.1358/dot.1999.35.6.544933.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of the capacity to execute voluntary movements appropriately. PD develops as a consequence of the degeneration of dopamine-containing neurons in the substantia nigra pars compacta (SNc). SNc is a component of the basal ganglia nuclei, the network that controls the neural signaling underlying voluntary movements. The nigral cell loss triggers a cascade of functional modifications in the basal ganglia circuit, the most important of which is hyperactivity of another component of the circuit, the subthalamic nucleus (STN). Subthalamic hyperactivity represents a major neural substrate of PD motor symptoms. The etiopathogenesis of PD is probably multifactorial. Various mechanisms - including mitochondrial defects, oxidative stress, glutamate toxicity and genetic factors - are likely to contribute to the degenerative process. Current therapy for PD is essentially symptomatic. L-dopa, the direct precursor of dopamine, is still the "gold standard". However, long-term therapy with L-dopa is associated with significant side effects. Therefore, there is a need for new therapeutic strategies aimed at relieving motor symptoms and slowing the progression of neuronal degeneration. The excitatory amino acid glutamate plays a central role in the functional modifications that affect the basal ganglia in PD. In particular, it mediates the enhanced excitatory drive of the STN to the output nuclei of the basal ganglia, which leads to the expression of PD symptoms. Furthermore, since the STN projects to the SNc, the excessive glutamatergic stimulation on residual nigral neurons may sustain the degenerative process, generating a self-maintaining vicious circle. From these considerations, it ensues that the use of drugs capable of antagonizing the effects of glutamate may provide new symptomatic and neuroprotective strategies for therapy of PD.
帕金森病(PD)是一种神经退行性疾病,其特征是丧失适当执行自主运动的能力。PD的发生是由于黑质致密部(SNc)中含多巴胺的神经元变性所致。SNc是基底神经节核的一个组成部分,该网络控制着自主运动背后的神经信号传导。黑质细胞的丧失引发了基底神经节回路一系列的功能改变,其中最重要的是回路的另一个组成部分——丘脑底核(STN)的活动亢进。丘脑底核活动亢进是PD运动症状的主要神经基础。PD的病因发病机制可能是多因素的。包括线粒体缺陷、氧化应激、谷氨酸毒性和遗传因素在内的各种机制可能都与退行性过程有关。目前PD的治疗基本上是对症治疗。左旋多巴,多巴胺的直接前体,仍然是“金标准”。然而,长期使用左旋多巴会产生明显的副作用。因此,需要新的治疗策略来缓解运动症状并减缓神经元变性的进展。兴奋性氨基酸谷氨酸在影响PD中基底神经节的功能改变中起核心作用。特别是,它介导了丘脑底核对基底神经节输出核的兴奋性驱动增强,从而导致PD症状的表现。此外,由于丘脑底核投射到黑质致密部,对残余黑质神经元的过度谷氨酸能刺激可能会维持退行性过程,形成一个自我维持的恶性循环。基于这些考虑,使用能够拮抗谷氨酸作用的药物可能为PD治疗提供新的对症和神经保护策略。