Medh R D, Santell L, Levin E G
Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037.
Blood. 1992 Aug 15;80(4):981-7.
Trans retinoic acid (t-RA) stimulated the production of tissue plasminogen activator (tPA) in HeLa-S3 and human umbilical vein endothelial cells (huvecs) in a dose-dependent manner with maximal release (four to five times control) at 40 nmol/L and 40 mumol/L, respectively. In endothelial cells, the stimulation of tPA production by phorbol 12-myristate 13-acetate (PMA) was potentiated 1.9-fold by 10 mumol/L t-RA, or 1.8 times the additive effect. In HeLa cells, total tPA secretion with 10 nmol/L PMA was increased from 43 ng/mL to 96 ng/mL by 40 nmol/L t-RA, which was two times the additive effect. Higher concentrations of t-RA (400 nmol/L) depressed tPA secretion by itself and also suppressed PMA-induced tPA production by 50%. Histamine and thrombin also synergized with t-RA. t-RA (40 nmol/L) and 10 micrograms/mL histamine or 10 U/mL thrombin combined to induce tPA production 3.4 and 1.3 times the additive effect in HeLa cells. Cyclic adenosine monophosphate (cAMP) levels were not significantly affected by 10 nmol/L to 10 mumol/L t-RA. Nor did 10 nmol/L PMA and 40 nmol/L t-RA together affect cAMP levels, suggesting that t-RA-mediated potentiation of PMA-induced tPA production occurred via a mechanism that was independent of cAMP levels. Downregulation of protein kinase C (PKC) by pretreatment of huvecs with 100 nmol/L PMA completely blocked a secondary response to PMA, but did not have a significant effect on t-RA induction. Pretreatment with 10 mumol/L t-RA, on the other hand, did not significantly affect a secondary stimulus by 100 nmol/L PMA, but completely suppressed a secondary stimulation by 10 mumol/L t-RA alone. These studies suggest that the mechanism mediating t-RA stimulation of tPA production interacts with the PKC pathway, resulting in synergism.
全反式维甲酸(t-RA)以剂量依赖方式刺激HeLa-S3细胞和人脐静脉内皮细胞(huvecs)产生组织纤溶酶原激活物(tPA),在40 nmol/L和40 μmol/L时分别达到最大释放量(为对照的4至5倍)。在内皮细胞中,佛波酯12-肉豆蔻酸酯13-乙酸酯(PMA)对tPA产生的刺激作用,被10 μmol/L t-RA增强了1.9倍,即增强至相加效应的1.8倍。在HeLa细胞中,40 nmol/L t-RA使10 nmol/L PMA时的总tPA分泌量从43 ng/mL增加至96 ng/mL,为相加效应的两倍。更高浓度的t-RA(400 nmol/L)自身会抑制tPA分泌,且使PMA诱导的tPA产生量降低50%。组胺和凝血酶也与t-RA协同作用。在HeLa细胞中,40 nmol/L t-RA与10 μg/mL组胺或10 U/mL凝血酶联合使用时,诱导tPA产生的效果分别为相加效应的3.4倍和1.3倍。10 nmol/L至10 μmol/L的t-RA对环磷酸腺苷(cAMP)水平无显著影响。10 nmol/L PMA与40 nmol/L t-RA共同作用也不影响cAMP水平,这表明t-RA介导的PMA诱导tPA产生的增强作用是通过一种独立于cAMP水平的机制发生的。用100 nmol/L PMA预处理huvecs使蛋白激酶C(PKC)下调,完全阻断了对PMA的二次反应,但对t-RA诱导无显著影响。另一方面,用10 μmol/L t-RA预处理对100 nmol/L PMA的二次刺激无显著影响,但完全抑制了单独使用10 μmol/L t-RA的二次刺激。这些研究表明,介导t-RA刺激tPA产生的机制与PKC途径相互作用,从而产生协同作用。