Suppr超能文献

用于肺癌分类的定量核图像特征的进一步评估。

Further evaluation of quantitative nuclear image features for classification of lung carcinomas.

作者信息

Thunnissen F B, Diegenbach P C, van Hattum A H, Tolboom J, van der Sluis D M, Schaafsma W, Houthoff H J, Baak J P

机构信息

Department of Pathology, University Hospital, Maastricht, The Netherlands.

出版信息

Pathol Res Pract. 1992 Jun;188(4-5):531-5. doi: 10.1016/s0344-0338(11)80050-6.

Abstract

The usefulness of quantitative nuclear image features (QNI) for the histological classification of lung carcinomas was investigated. As no clear distinction could be established between the distributions of these features for the nuclei of squamous cell, adenocarcinoma, and large cell carcinoma, the attention was restricted to the discrimination between small cell lung carcinoma (SCLC) and non-small cell carcinoma (NSCLC). This discrimination is the crucial one in discussions about the choice of treatment. The differences between SCLC and NSCLC are statistically highly significant for various QNI features. The use of more than one QNI feature hardly raised the discriminatory performance with respect to the distinction between SCLC and NSCLC. Inferences were made about the probability and confidence interval of SCLC for a given QNI feature. It is concluded that in cases of uncertainty or disagreement, nuclear characteristics are useful for the discrimination between SCLC and NSCLC.

摘要

研究了定量核图像特征(QNI)在肺癌组织学分类中的有用性。由于无法在鳞状细胞癌、腺癌和大细胞癌细胞核的这些特征分布之间建立明确区分,因此注意力集中在小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)的鉴别上。这种鉴别在关于治疗选择的讨论中至关重要。对于各种QNI特征,SCLC和NSCLC之间的差异在统计学上具有高度显著性。使用多个QNI特征几乎不会提高SCLC和NSCLC区分的鉴别性能。针对给定的QNI特征对SCLC的概率和置信区间进行了推断。得出的结论是,在存在不确定性或分歧的情况下,核特征对于SCLC和NSCLC的鉴别是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验