Oury T D, Ho Y S, Piantadosi C A, Crapo J D
Department of Pathology, Duke University Medical Center, Durham, NC 27710.
Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9715-9. doi: 10.1073/pnas.89.20.9715.
Although reactive O2 species appear to participate in central nervous system (CNS) O2 toxicity, the exact roles of different reactive O2 species are undetermined. To study the contribution of extracellular superoxide anion (O2-) to CNS O2 toxicity we constructed transgenic mice overexpressing human extracellular superoxide dismutase (ECSOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) in the brain. Remarkably, when exposed to 6 atm (1 atm = 101.3 kPA) of hyperbaric oxygen for 25 min, transgenic mice demonstrated higher mortality (83%) than nontransgenic litter-mates (33%; P < 0.017). Pretreatment with diethyldithiocarbamate, which inhibits both ECSOD and Cu/Zn superoxide dismutase (Cu/Zn SOD) activity, increased resistance to CNS O2 toxicity, in terms of both survival (100% in transgenics and 93% in nontransgenics) and resistance to seizures (4-fold increase in seizure latency in both transgenic and nontransgenic mice; P < 0.05). Thus, O2- apparently protects against CNS O2 toxicity. We hypothesized that O2- decreased toxicity by inactivating nitric oxide (NO.). To test this, we inhibited NO. synthase (EC 1.14.23) with N omega-nitro-L-arginine to determine whether NO. contributes to enhanced CNS O2 toxicity in transgenic mice. N omega-nitro-L-arginine protected both transgenic and nontransgenic mice against CNS O2 toxicity (100% survival and a 4-fold delay in time to first seizure; P < 0.05), as well as abolishing the difference in sensitivity to CNS O2 toxicity between transgenic and nontransgenic mice. These results implicate NO. as an important mediator in CNS O2 toxicity and suggest that ECSOD increases CNS O2 toxicity by inhibiting O2(-)-mediated inactivation of NO.
尽管活性氧似乎参与了中枢神经系统(CNS)的氧中毒,但不同活性氧的确切作用尚未确定。为了研究细胞外超氧阴离子(O2-)对中枢神经系统氧中毒的作用,我们构建了在大脑中过表达人细胞外超氧化物歧化酶(ECSOD;超氧化物:超氧化物氧化还原酶,EC 1.15.1.1)的转基因小鼠。值得注意的是,当暴露于6个大气压(1个大气压 = 101.3千帕)的高压氧中25分钟时,转基因小鼠的死亡率(83%)高于非转基因同窝小鼠(33%;P < 0.017)。用二乙基二硫代氨基甲酸盐预处理,该物质可抑制ECSOD和铜/锌超氧化物歧化酶(Cu/Zn SOD)的活性,在存活率(转基因小鼠为100%,非转基因小鼠为93%)和抗癫痫方面(转基因和非转基因小鼠的癫痫发作潜伏期均增加了4倍;P < 0.05),均提高了对中枢神经系统氧中毒的抵抗力。因此,O2-显然能预防中枢神经系统氧中毒。我们推测O2-通过使一氧化氮(NO.)失活来降低毒性。为了验证这一点,我们用Nω-硝基-L-精氨酸抑制NO.合酶(EC 1.14.23),以确定NO.是否促成转基因小鼠中枢神经系统氧中毒的增强。Nω-硝基-L-精氨酸保护转基因和非转基因小鼠免受中枢神经系统氧中毒(100%存活,首次癫痫发作时间延迟4倍;P < 0.05),同时消除了转基因和非转基因小鼠对中枢神经系统氧中毒敏感性的差异。这些结果表明NO.是中枢神经系统氧中毒的重要介质,并提示ECSOD通过抑制O2(-)介导的NO.失活而增加中枢神经系统氧中毒。