Suppr超能文献

使用最大熵噪声反卷积的量子分析。

Quantal analysis using maximum entropy noise deconvolution.

作者信息

Kullmann D M

机构信息

Department of Pharmacology, School of Medicine, University of California, San Francisco 94143-0450.

出版信息

J Neurosci Methods. 1992 Aug;44(1):47-57. doi: 10.1016/0165-0270(92)90113-r.

Abstract

When applying quantal analysis to synaptic transmission it is often unclear how much of the measured postsynaptic signal fluctuation arises from random sampling and noise rather than from the probabilistic transmitter release process. Unconstrained noise deconvolution methods do not overcome this because they tend to overfit the data, often giving a misleading picture of the underlying process. Instead, maximum entropy deconvolution provides a solution which is the smoothest, or most featureless, distribution that is still compatible with the data, taking noise and sample size into account. A simple way of achieving this is described, together with results of Monte Carlo simulations which show that the features present in the maximum entropy solution usually reflect the process underlying the data and not random sampling or noise.

摘要

在将量子分析应用于突触传递时,通常不清楚所测量的突触后信号波动中有多少是由随机采样和噪声引起的,而不是由概率性递质释放过程引起的。无约束噪声反卷积方法无法克服这一问题,因为它们往往会过度拟合数据,常常给出关于潜在过程的误导性图像。相反,最大熵反卷积提供了一种解决方案,它是在考虑噪声和样本大小的情况下,与数据仍然兼容的最平滑或最无特征的分布。文中描述了实现这一目标的一种简单方法,以及蒙特卡罗模拟的结果,这些结果表明最大熵解中呈现的特征通常反映了数据背后的过程,而不是随机采样或噪声。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验