Suppr超能文献

细胞色素c氧化酶中的分子内电子转移:一系列平衡反应

Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria.

作者信息

Verkhovsky M I, Morgan J E, Wikström M

机构信息

Department of Medical Chemistry, University of Helsinki, Finland.

出版信息

Biochemistry. 1992 Dec 1;31(47):11860-3. doi: 10.1021/bi00162a026.

Abstract

Intramolecular electron redistribution in cytochrome c oxidase after photolysis of the partially reduced CO-bound enzyme was followed at a number of different wavelengths by absorption spectroscopy. Spectra were constructed for the first two phases of this process. The first phase (tau = 3 microseconds) has a spectrum essentially identical to the difference between the Fea and Fea3 reduced-minus-oxidized spectra, indicating a 1:1 stoichiometry between the amount of Fea3 oxidized and Fea reduced. It is not necessary to invoke reduction or oxidation of other redox carriers in this phase. The second phase (tau = 35 microseconds) spectrum appears to be a linear combination of the Fea3 and Fea reduced-minus-oxidized difference spectra, reflecting the oxidation of four parts of Fea3 for every part of Fea oxidized. This process can be described in terms of transfer to CuA of electrons from the Fea3<==>Fea equilibrium system established in the first phase. The relative contributions of Fea3 and Fea in the second phase allow us to calculate the equilibrium constant for Fea3<==>Fea electron exchange, which yields a delta Em of 36 mV for the two centers (Fea3 more positive). Together with the apparent rate constant for the fast phase, this equilibrium constant yields, in turn, the forward (kf) and reverse (kr) rates for electron transfer from Fea to Fea3 as follows: kf = 2.4 x 10(5) s-1 and kr = 6 x 10(4) s-1. kf is much faster than any observed step in the reaction of the reduced enzyme with O2. Thus, the catalytic mechanism of O2 reduction to water is not rate-limited by electron transfer from Fea to the binuclear Fea3/Cu(B) site.

摘要

通过吸收光谱法,在多个不同波长下跟踪了部分还原的一氧化碳结合型细胞色素c氧化酶光解后分子内的电子重新分布情况。构建了该过程前两个阶段的光谱。第一阶段(τ = 3微秒)的光谱与Fea和Fea3还原态减去氧化态光谱之间的差异基本相同,这表明Fea3氧化量与Fea还原量之间的化学计量比为1:1。在此阶段无需引入其他氧化还原载体的还原或氧化。第二阶段(τ = 35微秒)的光谱似乎是Fea3和Fea还原态减去氧化态差异光谱的线性组合,反映出每氧化一部分Fea,就有四部分Fea3被氧化。这个过程可以用从第一阶段建立的Fea3<==>Fea平衡体系向CuA转移电子来描述。第二阶段中Fea3和Fea的相对贡献使我们能够计算Fea3<==>Fea电子交换的平衡常数,两个中心(Fea3更正)的ΔEm为36 mV。连同快速阶段的表观速率常数,这个平衡常数又依次得出从Fea到Fea3的电子转移正向(kf)和反向(kr)速率如下:kf = 2.4×10(5) s-1,kr = 6×10(4) s-1。kf比还原酶与O₂反应中观察到的任何步骤都要快得多。因此,O₂还原为水的催化机制不受从Fea到双核Fea3/Cu(B)位点电子转移的速率限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验