Low S Y, Taylor P M, Hundal H S, Pogson C I, Rennie M J
Department of Anatomy and Physiology, University of Dundee, U.K.
Biochem J. 1992 Jun 1;284 ( Pt 2)(Pt 2):333-40. doi: 10.1042/bj2840333.
There is increasing evidence that membrane transporters for glutamine and glutamate are involved in control of liver metabolism in health and disease. We therefore investigated the effects of three catabolic states [starvation (60 h), diabetes (4 days after streptozotocin treatment) and corticosteroid (8-day dexamethasone) treatment] associated with altered hepatic amino acid metabolism on the activity of glutamine and glutamate transporters in sinusoidal membrane vesicles from livers of treated rats. In control preparations, L-[14C]glutamine uptake was largely Na(+)-dependent, but L-[14C]glutamate uptake was largely Na(+)-independent. Vmax. values for Na(+)-dependent uptake of glutamine and/or glutamate exceeded control values (by about 2- and 12-fold respectively) in liver membrane vesicles from starved (glutamine), diabetic (glutamate) or steroid-treated (glutamine and glutamate) rats. The Km values for Na(+)-dependent transport of glutamine or glutamate and the rates of their Na(+)-independent uptake were not significantly altered by any treatment. Na(+)-independent glutamate uptake appeared to include a dicarboxylate-exchange component. The patterns of inhibition of glutamine and glutamate uptake by other amino acids indicated that the apparent induction of Na(+)-dependent amino acid transport in catabolic states included increased functional expression of systems A, N (both for glutamine) and X-ag (for glutamate). The results demonstrate that conditions resulting in increased secretion of catabolic hormones (e.g. corticosteroid, glucagon) are associated with increased capacity for Na(+)-dependent transport of amino acids into liver cells from the blood. The modulation of hepatic permeability to glutamine and glutamate in these situations may control the availability of amino acids for intrahepatic metabolic processes such as ureagenesis, ammonia detoxification and gluconeogenesis.
越来越多的证据表明,谷氨酰胺和谷氨酸的膜转运体参与了健康和疾病状态下肝脏代谢的调控。因此,我们研究了三种分解代谢状态[饥饿(60小时)、糖尿病(链脲佐菌素治疗后4天)和皮质类固醇(8天地塞米松)治疗],这些状态与肝脏氨基酸代谢改变有关,对经处理大鼠肝脏的肝血窦膜囊泡中谷氨酰胺和谷氨酸转运体活性的影响。在对照制剂中,L-[14C]谷氨酰胺摄取在很大程度上依赖于Na(+),但L-[14C]谷氨酸摄取在很大程度上不依赖于Na(+)。在饥饿(谷氨酰胺)、糖尿病(谷氨酸)或类固醇处理(谷氨酰胺和谷氨酸)大鼠的肝膜囊泡中,谷氨酰胺和/或谷氨酸的Na(+)依赖性摄取Vmax值超过对照值(分别约为2倍和12倍)。谷氨酰胺或谷氨酸的Na(+)依赖性转运的Km值及其非Na(+)依赖性摄取速率在任何处理下均无显著改变。非Na(+)依赖性谷氨酸摄取似乎包括一个二羧酸交换成分。其他氨基酸对谷氨酰胺和谷氨酸摄取的抑制模式表明,分解代谢状态下Na(+)依赖性氨基酸转运的明显诱导包括系统A、N(两者均针对谷氨酰胺)和X-ag(针对谷氨酸)功能表达的增加。结果表明,导致分解代谢激素(如皮质类固醇、胰高血糖素)分泌增加的情况与从血液中向肝细胞Na(+)依赖性转运氨基酸的能力增加有关。在这些情况下,肝脏对谷氨酰胺和谷氨酸通透性的调节可能控制了肝内代谢过程(如尿素生成、氨解毒和糖异生)中氨基酸的可用性。