Cloney L P, Bekkaoui D R, Wood M G, Hemmingsen S M
Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan.
J Biol Chem. 1992 Nov 15;267(32):23333-6.
Brassica napus chaperonin-60 alpha and chaperonin-60 beta genes expressed separately and in combination produce three novel Escherichia coli strains: alpha, beta, and alpha beta. In beta and alpha beta cells, the plant gene products assemble efficiently into tetradecameric cpn60(14) species, including novel hybrids containing both bacterial and plant gene products. The levels of authentic groEL14 are reduced in these cells (Cloney, L. P., Wu, H. B., and Hemmingsen, S. M. (1992) J. Biol. Chem. 267, 23327-23332). The assembly of cyanobacterial ribulose-P2 carboxylase (rubisco) in E. coli requires the activities of the endogenous chaperonin proteins. Furthermore, the extent to which assembly occurs is limited by the normal levels of expression of the groE operon (Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) Nature 337, 44-47). We have now monitored the accumulation of cyanobacterial rubisco in E. coli alpha, beta, and alpha beta cells to assess the activity of the plant cpn60 gene products and effects on endogenous chaperonin functions. Expression of cpn-60 alpha alone did not enhance rubisco assembly, which is consistent with our previous observation that p60cpn-60 alpha required the presence of p60cpn-60 beta for assembly into cpn60(14) species. In contrast, expression of cpn-60 beta alone resulted in markedly enhanced rubisco assembly in cells that accumulated normal levels of both endogenous chaperonin polypeptides (groEL and groES). This demonstrates that assembled p60cpn-60 beta is functional as a chaperonin in E. coli. Co-expression of cpn-60 alpha and cpn-60 beta in cells with normal levels of expression of groES and groEL suppressed rubisco assembly. Increased expression of groES in cells in which cpn-60 alpha and cpn-60 beta were co-expressed relieved this suppression and resulted in enhanced rubisco assembly. Implications with respect to dependence of chloroplast cpn60 function on cpn10 are discussed.
甘蓝型油菜伴侣蛋白60α和伴侣蛋白60β基因单独表达以及共同表达产生了三种新型大肠杆菌菌株:α、β和αβ。在β和αβ细胞中,植物基因产物能有效地组装成十四聚体cpn60(14),包括同时含有细菌和植物基因产物的新型杂种。在这些细胞中,天然groEL14的水平降低了(克洛尼,L.P.,吴,H.B.,和亨明森,S.M.(1992年)《生物化学杂志》267卷,23327 - 23332页)。蓝藻核酮糖 - P2羧化酶(rubisco)在大肠杆菌中的组装需要内源性伴侣蛋白的活性。此外,组装发生的程度受到groE操纵子正常表达水平的限制(戈卢比诺夫,P.,加滕比,A.A.,和洛里默,G.H.(1989年)《自然》337卷,44 - 47页)。我们现在监测了蓝藻rubisco在大肠杆菌α、β和αβ细胞中的积累情况,以评估植物cpn60基因产物的活性以及对内源性伴侣蛋白功能的影响。单独表达cpn - 60α并不能增强rubisco的组装,这与我们之前的观察结果一致,即p60cpn - 60α需要p60cpn - 60β的存在才能组装成cpn60(14)。相反,单独表达cpn - 60β导致在积累正常水平内源性伴侣蛋白多肽(groEL和groES)的细胞中rubisco组装显著增强。这表明组装好的p60cpn - 60β在大肠杆菌中作为伴侣蛋白发挥功能。在groES和groEL表达水平正常的细胞中共表达cpn - 60α和cpn - 60β会抑制rubisco组装。在共表达cpn - 60α和cpn - 60β的细胞中增加groES的表达可缓解这种抑制并导致rubisco组装增强。讨论了叶绿体cpn60功能对cpn10的依赖性相关问题。