Suppr超能文献

在微生物系统中对植物细胞色素 P450 进行功能重建的合理设计策略。

Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems.

机构信息

Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.

Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.

出版信息

Curr Opin Plant Biol. 2021 Apr;60:102005. doi: 10.1016/j.pbi.2021.102005. Epub 2021 Feb 26.

Abstract

Plant natural products (NPs) are of pharmaceutical and agricultural significance, yet the low abundance is largely impeding the broad investigation and utilization. Microbial bioproduction is a promising alternative sourcing to plant NPs. Cytochrome P450s (CYPs) play an essential role in plant secondary metabolism, and functional reconstitution of plant CYPs in the microbial system is one of the major challenges in establishing efficient microbial plant NP bioproduction. In this review, we briefly summarized the recent progress in rational engineering strategies for enhanced activity of plant CYPs in Escherichia coli and Saccharomyces cerevisiae, two commonly used microbial hosts. We believe that in-depth foundational investigations on the native microenvironment of plant CYPs are necessary to adapt the microbial systems for more efficient functional reconstitution of plant CYPs.

摘要

植物天然产物(NPs)具有药用和农业意义,但由于其丰度低,在很大程度上阻碍了广泛的研究和利用。微生物生物生产是一种有前途的植物 NPs 替代来源。细胞色素 P450s(CYPs)在植物次生代谢中起着重要作用,在微生物系统中对植物 CYP 的功能重建是建立有效的微生物植物 NP 生物生产的主要挑战之一。在这篇综述中,我们简要总结了近年来在提高大肠杆菌和酿酒酵母这两种常用微生物宿主中植物 CYP 活性的合理工程策略方面的最新进展。我们相信,对植物 CYP 天然微环境的深入基础研究对于使微生物系统更有效地进行植物 CYP 的功能重建是必要的。

相似文献

1
Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems.
Curr Opin Plant Biol. 2021 Apr;60:102005. doi: 10.1016/j.pbi.2021.102005. Epub 2021 Feb 26.
2
Strategies for microbial synthesis of high-value phytochemicals.
Nat Chem. 2018 Apr;10(4):395-404. doi: 10.1038/s41557-018-0013-z. Epub 2018 Mar 22.
3
Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering.
Crit Rev Biotechnol. 2023 Feb;43(1):1-21. doi: 10.1080/07388551.2021.2003292. Epub 2021 Dec 5.
5
Engineering Escherichia coli for production of functionalized terpenoids using plant P450s.
Nat Chem Biol. 2007 May;3(5):274-7. doi: 10.1038/nchembio875. Epub 2007 Apr 15.
6
Engineering Plant Cytochrome P450s for Enhanced Synthesis of Natural Products: Past Achievements and Future Perspectives.
Plant Commun. 2019 Dec 3;1(1):100012. doi: 10.1016/j.xplc.2019.100012. eCollection 2020 Jan 13.
7
Engineered Biosynthesis of Medicinally Important Plant Natural Products in Microorganisms.
Curr Top Med Chem. 2016;16(15):1740-54. doi: 10.2174/1568026616666151012112637.
8
9
Engineering Plant Secondary Metabolism in Microbial Systems.
Plant Physiol. 2019 Mar;179(3):844-861. doi: 10.1104/pp.18.01291. Epub 2019 Jan 14.
10
Recent advances in triterpenoid pathway elucidation and engineering.
Biotechnol Adv. 2023 Nov;68:108214. doi: 10.1016/j.biotechadv.2023.108214. Epub 2023 Jul 20.

引用本文的文献

1
Semi-rational design and modification of phosphoketolase to improve the yield of tyrosol in .
Synth Syst Biotechnol. 2024 Nov 26;10(1):294-306. doi: 10.1016/j.synbio.2024.11.007. eCollection 2025.
2
Elucidating the metabolic roles of isoflavone synthase-mediated protein-protein interactions in yeast.
bioRxiv. 2024 Oct 24:2024.10.24.620109. doi: 10.1101/2024.10.24.620109.
4
Complete biosynthesis of the phenylethanoid glycoside verbascoside.
Plant Commun. 2023 Jul 10;4(4):100592. doi: 10.1016/j.xplc.2023.100592. Epub 2023 Mar 20.
6
Establishment of strigolactone-producing bacterium-yeast consortium.
Sci Adv. 2021 Sep 17;7(38):eabh4048. doi: 10.1126/sciadv.abh4048.

本文引用的文献

1
Functional expression of eukaryotic cytochrome P450s in yeast.
Biotechnol Bioeng. 2021 Mar;118(3):1050-1065. doi: 10.1002/bit.27630. Epub 2020 Nov 28.
2
Engineering of Phytosterol-Producing Yeast Platforms for Functional Reconstitution of Downstream Biosynthetic Pathways.
ACS Synth Biol. 2020 Nov 20;9(11):3157-3170. doi: 10.1021/acssynbio.0c00417. Epub 2020 Oct 21.
4
Biosynthesis of medicinal tropane alkaloids in yeast.
Nature. 2020 Sep;585(7826):614-619. doi: 10.1038/s41586-020-2650-9. Epub 2020 Sep 2.
5
Discovery and modification of cytochrome P450 for plant natural products biosynthesis.
Synth Syst Biotechnol. 2020 Jul 1;5(3):187-199. doi: 10.1016/j.synbio.2020.06.008. eCollection 2020 Sep.
8
Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon.
Plant Mol Biol. 2020 Mar;102(4-5):403-416. doi: 10.1007/s11103-019-00954-3. Epub 2020 Jan 3.
9
Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications.
J Biol Chem. 2020 Jan 17;295(3):833-849. doi: 10.1074/jbc.REV119.008758. Epub 2019 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验