McClelland J H, Daubert J P, Kavanagh K M, Harrell F E, Ideker R E
Division of Cardiology, Oregon Health Sciences University, Portland.
Pacing Clin Electrophysiol. 1992 Jul;15(7):986-92. doi: 10.1111/j.1540-8159.1992.tb03091.x.
Cardioversion shocks given during ventricular tachycardia may cause ventricular fibrillation or acceleration of ventricular tachycardia, or arrest the tachycardia. A recently proposed theory may explain why the former two phenomena may occur. Briefly, this theory states that potential gradient shock fields of a critical strength delivered to tissue with a critical degree of refractoriness will cause circulating wave fronts of ventricular activation ("rotors") manifest as ventricular arrhythmia. We tested this theory by delivering nonsynchronized shocks 50% higher than defibrillation threshold or 50% lower than defibrillation threshold during 275 episodes of ventricular tachycardia in eight dogs with 5- to 7-day-old myocardial infarcts. Shocks stronger than the defibrillation threshold are likely to create shock fields in the ventricles everywhere stronger than this critical value, and therefore would not generate rotors. Shocks less strong than the defibrillation threshold may create shock fields within the ventricles that include the critical value, and therefore cause rotors if given when critically refractory tissue is present. Nonsynchronized shocks were used to increase the likelihood of encountering tissue with a critical degree of refractoriness. Ventricular fibrillation or acceleration of ventricular tachycardia occurred following 83 of 138 (60%) low strength shocks and following 20 of 137 (14.6%) high strength shocks. The pooled odds ratio for induction of ventricular fibrillation or accelerated ventricular tachycardia after low strength shocks as compared to high strength shocks was 8.9.
when given during ventricular tachycardia, low strength shocks are much more likely to cause ventricular fibrillation or accelerated ventricular tachycardia than are high strength shocks (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
室性心动过速期间给予的心脏复律电击可能会导致心室颤动、室性心动过速加速或使心动过速终止。最近提出的一种理论或许可以解释为何会出现前两种现象。简而言之,该理论认为,以临界强度的潜在梯度电击场作用于具有临界不应期程度的组织时,会导致心室激活的循环波前(“转子”)表现为室性心律失常。我们通过在8只患有5至7日龄心肌梗死的犬的275次室性心动过速发作期间,给予高于除颤阈值50%或低于除颤阈值50%的非同步电击来验证这一理论。比除颤阈值更强的电击很可能会在心室各处产生比这个临界值更强的电击场,因此不会产生转子。比除颤阈值弱的电击可能会在心室中产生包含临界值的电击场,因此如果在存在临界不应期组织时给予,就会导致转子形成。使用非同步电击来增加遇到具有临界不应期程度组织的可能性。138次低强度电击中有83次(60%)之后出现了心室颤动或室性心动过速加速,137次高强度电击中有20次(14.6%)之后出现了这种情况。与高强度电击相比,低强度电击诱发心室颤动或加速性室性心动过速的合并优势比为8.9。
在室性心动过速期间给予时,低强度电击比高强度电击更有可能导致心室颤动或加速性室性心动过速(P小于0.01)。(摘要截断于250字)