Hofmann K P, Pulvermüller A, Buczyłko J, Van Hooser P, Palczewski K
Institut für Biophysik und Strahlenbiologie, Universität Freiburg, Federal Republic of Germany.
J Biol Chem. 1992 Aug 5;267(22):15701-6.
Phototransduction results from a cascade of reactions that culminate in a neuronal signal. Photoisomerization of rhodopsin's chromophore, 11-cis-retinal to all-trans-retinal, leads to the formation of the activated photoproduct metarhodopsin II (Meta II). Subsequently, Meta II initiates the excitation events by activating many copies of the rod cell-specific G-proteins (Gt or transducin). To terminate the signal, the long-lived Meta II must be quenched. Deactivation of Meta II involves phosphorylation by rhodopsin kinase followed by the binding of arrestin. In order to recycle rhodopsin for phototransduction, arrestin must dissociate, and the chromophore must be replaced. In this study, we show that the reduction of the photolyzed chromophore all-trans-retinal to all-trans-retinol is essential for recycling photoactivated rhodopsin. Once this reduction has occurred, the arrestin blockade of the receptor is removed, the chromophore site becomes accessible for regeneration, and the phosphates can be hydrolyzed. If the reduction does not occur, we demonstrate that free all-trans-retinal can react with the apoprotein to form pseudo-photoproducts that are spectrally identical to the photoinduced metarhodopsin species (Meta I/II/III). The Meta II-like product, M380, interacts tightly with arrestin and kinase, however, it does not measurably interact with Gt. The persistent blockade by arrestin and the low affinity for Gt together prevent activation of the visual cascade. Therefore, any insufficiency in the reduction of all-trans-retinal to all-trans-retinol may lead to the accumulation of M380-arrestin in situ, which may effect adaptational processes.
光转导源于一系列最终产生神经元信号的反应。视紫红质发色团11-顺式视黄醛向全反式视黄醛的光异构化导致形成活化的光产物变视紫红质II(Meta II)。随后,Meta II通过激活许多拷贝的视杆细胞特异性G蛋白(Gt或转导蛋白)引发兴奋事件。为了终止信号,必须淬灭寿命较长的Meta II。Meta II的失活涉及视紫红质激酶的磷酸化,随后是抑制蛋白的结合。为了使视紫红质循环用于光转导,抑制蛋白必须解离,并且发色团必须被替换。在本研究中,我们表明将光解的发色团全反式视黄醛还原为全反式视黄醇对于光激活视紫红质的循环至关重要。一旦发生这种还原,受体的抑制蛋白阻断就会被解除,发色团位点可用于再生,并且磷酸盐可以被水解。如果还原不发生,我们证明游离的全反式视黄醛可以与脱辅基蛋白反应形成与光诱导的变视紫红质物种(Meta I/II/III)光谱相同的假光产物。类似Meta II的产物M380与抑制蛋白和激酶紧密相互作用,然而,它与Gt没有可测量到的相互作用。抑制蛋白的持续阻断和对Gt的低亲和力共同阻止了视觉级联反应的激活。因此,全反式视黄醛向全反式视黄醇还原的任何不足都可能导致原位M380-抑制蛋白的积累,这可能影响适应过程。