Suppr超能文献

大肠杆菌中的乙醇酸代谢。

Glycolate metabolism in Escherichia coli.

作者信息

HANSEN R W, HAYASHI J A

出版信息

J Bacteriol. 1962 Mar;83(3):679-87. doi: 10.1128/jb.83.3.679-687.1962.

Abstract

Hansen, Robert W. (University of Illinois College of Medicine, Chicago) and James A. Hayashi. Glycolate metabolism in Escherichia coli. J. Bacteriol. 83:679-687. 1962.-This study of glycolate-adapted Escherichia coli indicates that the most probable route for utilization of the substrate includes glyceric acid, 3-phosphoglyceric acid, and the tricarboxylic acid cycle. A glyceric acid dehydrogenase, which reduces tartronic semialdehyde to glycerate in the presence of reduced diphosphopyridine nucleotide, and a kinase, which catalyzes the formation of 3-phosphoglycerate from glyceric acid and adenosine triphosphate, were shown to be present. Carbon recoveries in growing cultures and manometric data obtained with resting cells showed the complete oxidation of glycolate to carbon dioxide. Measurements of the oxidation of tricarboxylic acid cycle intermediates indicated that these compounds are oxidized without lag and at a rate commensurate with the rate of glycolate oxidation. Assays of the enzymes characteristic of known pathways of terminal oxidation, such as isocitratase, malate synthetase, isocitric dehydrogenase, and condensing enzyme, provided further evidence for an operating tricarboxylic acid cycle. A postulated pathway for the utilization of glycolic acid is as follows: glycolate --> glycerate --> 3-phosphoglycerate --> pyruvate --> tricarboxylic acid cycle.

摘要

汉森,罗伯特·W.(伊利诺伊大学医学院,芝加哥)和詹姆斯·A.林。大肠杆菌中的乙醇酸代谢。《细菌学杂志》83:679 - 687。1962年。——对适应乙醇酸的大肠杆菌的这项研究表明,利用该底物最可能的途径包括甘油酸、3 - 磷酸甘油酸和三羧酸循环。研究表明存在一种甘油酸脱氢酶,在还原型二磷酸吡啶核苷酸存在的情况下,它将酒石酸半醛还原为甘油酸;还存在一种激酶,它催化由甘油酸和三磷酸腺苷形成3 - 磷酸甘油酸。生长培养物中的碳回收率以及静息细胞获得的测压数据表明乙醇酸完全氧化为二氧化碳。对三羧酸循环中间产物氧化的测量表明,这些化合物无延迟地被氧化,且氧化速率与乙醇酸氧化速率相当。对已知末端氧化途径特征酶的测定,如异柠檬酸酶、苹果酸合成酶、异柠檬酸脱氢酶和缩合酶,为运行的三羧酸循环提供了进一步的证据。推测的乙醇酸利用途径如下:乙醇酸→甘油酸→3 - 磷酸甘油酸→丙酮酸→三羧酸循环。

相似文献

1
Glycolate metabolism in Escherichia coli.
J Bacteriol. 1962 Mar;83(3):679-87. doi: 10.1128/jb.83.3.679-687.1962.
2
GLYCOLIC ACID OXIDATION BY ESCHERICHIA COLI ADAPTED TO GLYCOLATE.
J Bacteriol. 1963 May;85(5):1124-31. doi: 10.1128/jb.85.5.1124-1131.1963.
3
Microbial production of glycolate from acetate by metabolically engineered Escherichia coli.
J Biotechnol. 2019 Feb 10;291:41-45. doi: 10.1016/j.jbiotec.2018.12.012. Epub 2019 Jan 4.
4
EVIDENCE FOR A TRICARBOXYLIC ACID CYCLE IN MYCOPLASMA HOMINIS.
J Bacteriol. 1964 Dec;88(6):1602-7. doi: 10.1128/jb.88.6.1602-1607.1964.
5
GLUCOSE CATABOLISM BY BACILLUS POPILLIAE AND BACILLUS LENTIMORBUS.
J Bacteriol. 1964 Feb;87(2):303-10. doi: 10.1128/jb.87.2.303-310.1964.
6
Two forms of D-glycerate kinase in Escherichia coli.
J Bacteriol. 1969 Mar;97(3):1227-33. doi: 10.1128/jb.97.3.1227-1233.1969.
8
Glyoxylate intermediate of the direct oxidation of acetate and glycolate by E. coli.
Antonie Van Leeuwenhoek. 1959;25:179-82. doi: 10.1007/BF02542844.
10
Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in .
ACS Synth Biol. 2020 Sep 18;9(9):2600-2609. doi: 10.1021/acssynbio.0c00404. Epub 2020 Sep 1.

引用本文的文献

1
Engineering Escherichia coli for utilization of PET degraded ethylene glycol as sole feedstock.
Biotechnol Biofuels Bioprod. 2024 Sep 13;17(1):121. doi: 10.1186/s13068-024-02568-4.
2
Transcriptome Analysis Reveals the Role of Sucrose in the Production of L3 Exopolysaccharide.
Int J Mol Sci. 2024 Jun 29;25(13):7185. doi: 10.3390/ijms25137185.
3
Multiple levels of transcriptional regulation control glycolate metabolism in .
mBio. 2024 Aug 14;15(8):e0152424. doi: 10.1128/mbio.01524-24. Epub 2024 Jul 2.
4
Escherichia coli adaptation under prolonged resource exhaustion is characterized by extreme parallelism and frequent historical contingency.
PLoS Genet. 2024 Jun 17;20(6):e1011333. doi: 10.1371/journal.pgen.1011333. eCollection 2024 Jun.
5
Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers.
World J Microbiol Biotechnol. 2022 Apr 15;38(5):89. doi: 10.1007/s11274-022-03270-z.
7
Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle.
Nature. 2019 Nov;575(7783):500-504. doi: 10.1038/s41586-019-1748-4. Epub 2019 Nov 13.
8
Long-Term Biogas Production from Glycolate by Diverse and Highly Dynamic Communities.
Microorganisms. 2018 Oct 4;6(4):103. doi: 10.3390/microorganisms6040103.
9
Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli.
AMB Express. 2016 Dec;6(1):29. doi: 10.1186/s13568-016-0200-5. Epub 2016 Apr 14.
10
Potato yield enhancement through intensification of sink and source performances.
Breed Sci. 2015 Mar;65(1):77-84. doi: 10.1270/jsbbs.65.77. Epub 2015 Mar 1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验