Suppr超能文献

海洋变形菌通过β-羟基天门冬氨酸循环代谢乙醇酸。

Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle.

机构信息

Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Department of Microbial Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.

出版信息

Nature. 2019 Nov;575(7783):500-504. doi: 10.1038/s41586-019-1748-4. Epub 2019 Nov 13.

Abstract

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria, the further fate of this C metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the β-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.

摘要

海洋中有机碳的最丰富来源之一是乙醇酸盐,海洋浮游植物分泌的乙醇酸盐估计每年在海洋环境中产生 1 太字节的通量。尽管人们普遍认为海洋细菌将乙醇酸盐氧化为乙醛酸,但这种 C 代谢物的进一步命运还不是很清楚。在这里,我们表明,普遍存在的海洋变形菌能够通过β-羟基天冬氨酸循环(BHAC)同化乙醛酸,该循环最初是在 56 年前提出的。我们阐明了 BHAC 的生物化学,并描述了其关键酶的结构,包括一种以前未知的初级亚胺还原酶。总的来说,BHAC 能够通过仅四个酶促步骤直接从乙醛酸生产草酰乙酸,这代表了迄今为止描述的最有效的乙醛酸同化途径。对海洋宏基因组的分析表明,BHAC 在全球范围内分布,平均比甘油酸途径丰富 20 倍,甘油酸途径是唯一已知的净乙醛酸同化途径。在一次浮游植物爆发的现场研究中,我们表明,乙醇酸盐以高纳摩尔浓度存在,并被原核生物以足以在一周内完全周转乙醇酸盐库的速度吸收。在爆发期间,编码 BHAC 关键酶的基因存在于细菌群落的 1.5%以内,并被积极转录,支持 BHAC 在乙醇酸盐同化中的作用,并暗示了以前未描述的自养浮游植物和异养细菌之间的营养相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验