Suppr超能文献

利用13C核磁共振技术检测酿酒酵母体内叶酸介导的丝氨酸和甘氨酸合成过程。

13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae.

作者信息

Pasternack L B, Laude D A, Appling D R

机构信息

Department of Chemistry and Biochemistry, University of Texas, Austin 78712.

出版信息

Biochemistry. 1992 Sep 22;31(37):8713-9. doi: 10.1021/bi00152a005.

Abstract

Saccharomyces cerevisiae has both cytoplasmic and mitochondrial C1-tetrahydrofolate (THF) synthases. These trifunctional isozymes are central to single-carbon metabolism and are responsible for interconversion of the THF derivatives in the respective compartments. In the present work, we have used 13C NMR to study folate-mediated single-carbon metabolism in these two compartments, using glycine and serine synthesis as metabolic endpoints. The availability of yeast strains carrying deletions of cytoplasmic and/or mitochondrial C1-THF synthase allows a dissection of the role each compartment plays in this metabolism. When yeast are incubated with [13C]formate, 13C NMR spectra establish that production of [3-13C]serine is dependent on C1-THF synthase and occurs primarily in the cytosol. However, in a strain lacking cytoplasmic C1-THF synthase but possessing the mitochondrial isozyme, [13C]formate can be metabolized to [2-13C]glycine and [3-13C]serine. This provides in vivo evidence for the mitochondrial assimilation of formate, activation and conversion to [13C]CH2-THF via mitochondrial C1-THF synthase, and subsequent glycine synthesis via reversal of the glycine cleavage system. Additional supporting evidence of reversibility of GCV in vivo is the production of [2-13C]glycine and [2,3-13C]serine in yeast strains grown with [3-13C]serine. This metabolism is independent of C1-THF synthase since these products were observed in strains lacking both the cytoplasmic and mitochondrial isozymes. These results suggest that when formate is the one-carbon donor, assimilation is primarily cytoplasmic, whereas when serine serves as one-carbon donor, considerable metabolism occurs via mitochondrial pathways.

摘要

酿酒酵母具有细胞质和线粒体C1 - 四氢叶酸(THF)合成酶。这些三功能同工酶是单碳代谢的核心,负责各自区室中THF衍生物的相互转化。在本研究中,我们利用13C NMR研究了这两个区室中叶酸介导的单碳代谢,以甘氨酸和丝氨酸的合成为代谢终点。携带细胞质和/或线粒体C1 - THF合成酶缺失的酵母菌株的可用性,使得我们能够剖析每个区室在这种代谢中所起的作用。当酵母与[13C]甲酸盐一起孵育时,13C NMR光谱表明[3 - 13C]丝氨酸的产生依赖于C1 - THF合成酶,并且主要发生在细胞质中。然而,在缺乏细胞质C1 - THF合成酶但具有线粒体同工酶的菌株中,[13C]甲酸盐可以代谢为[2 - 13C]甘氨酸和[3 - 13C]丝氨酸。这为甲酸盐的线粒体同化、通过线粒体C1 - THF合成酶激活并转化为[13C]CH2 - THF以及随后通过甘氨酸裂解系统的逆转合成甘氨酸提供了体内证据。体内甘氨酸裂解酶系统(GCV)可逆性的额外支持证据是,在用[3 - 13C]丝氨酸培养的酵母菌株中产生了[2 - 13C]甘氨酸和[2,3 - 13C]丝氨酸。这种代谢不依赖于C1 - THF合成酶,因为在缺乏细胞质和线粒体同工酶的菌株中也观察到了这些产物。这些结果表明,当甲酸盐作为一碳供体时,同化主要发生在细胞质中,而当丝氨酸作为一碳供体时,相当一部分代谢通过线粒体途径进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验