Martin P R, Grünert U
Max-Planck-Institut für Hirnforschung, Frankfurt am Main, Germany.
J Comp Neurol. 1992 Sep 8;323(2):269-87. doi: 10.1002/cne.903230210.
The anatomical substrates of spatial and color vision in the primate retina are investigated by measuring the immunoreactivity and spatial density of bipolar, amacrine and horizontal cells in the inner nuclear layer of the macaque monkey retina. Bipolar cells can be distinguished from amacrine and horizontal cells by their differential immunoreactivity to antisera against glutamate, glycine, GABA, parvalbumin, calbindin (CaBP D-28K), and the L7 protein from mouse cerebellum. The spatial density of bipolar cells is compared to the densities of photoreceptors and ganglion cells at different retinal eccentricities. In the centralmost 2 mm, cone bipolar cells outnumber ganglion cells by about 1.4:1. The density of cone bipolar cells is thus high enough to allow for input to different (parasol and midget) ganglion cell classes by different (diffuse and midget) bipolar cell classes. The density gradient of cone bipolar cells follows closely that of ganglion cells in central retina but falls less steeply in peripheral retina. This suggests that the convergence of cone signals to the receptive fields of ganglion cells in the peripheral retina occurs in the inner plexiform layer. The density of cone bipolar cells is 2.5-4 times that of cones at all eccentricities studied, implying that cone connectivity to bipolar cells remains constant throughout the retina. Different subgroups of bipolar cells are distinguished by their relative immunoreactivity to the different antisera. All rod and cone bipolar cells show moderate to strong glutamate-like immunoreactivity. The bipolar cells that show weak to moderate GABA-like immunoreactivity are also labeled with the antiserum to the L7 protein and are thus identified as rod bipolar cells. Nearly half of all cone bipolar cells showed glycine-like immunoreactivity. The results suggest that the inhibitory neurotransmitter candidates GABA and glycine are segregated respectively in rod and cone bipolar cell pathways. A diffuse, cone bipolar cell type can be identified by the anti-parvalbumin and the anti-calbindin antisera. All horizontal cells show parvalbumin-like immunoreactivity. Nearly all amacrine cells show GABA-like or glycine-like immunoreactivity; a variety of subpopulations also show immunoreactivity to one or more of the other markers used.
通过测量猕猴视网膜内核层中双极细胞、无长突细胞和水平细胞的免疫反应性及空间密度,研究了灵长类动物视网膜中空间视觉和颜色视觉的解剖学基础。双极细胞可通过其对针对谷氨酸、甘氨酸、GABA、小白蛋白、钙结合蛋白(CaBP D - 28K)以及小鼠小脑L7蛋白的抗血清的不同免疫反应性,与无长突细胞和水平细胞区分开来。将双极细胞的空间密度与不同视网膜离心度下的光感受器和神经节细胞的密度进行比较。在最中心的2毫米区域,视锥双极细胞的数量比神经节细胞多约1.4:1。因此,视锥双极细胞的密度足够高,足以使不同类型(弥散型和侏儒型)的双极细胞向不同类型(伞状和侏儒型)的神经节细胞输入信号。视锥双极细胞的密度梯度在视网膜中央与神经节细胞的密度梯度密切相关,但在视网膜周边下降得没那么陡峭。这表明视锥信号在周边视网膜中向神经节细胞感受野的汇聚发生在内网状层。在所研究的所有离心度下,视锥双极细胞的密度是视锥细胞密度的2.5至4倍,这意味着视锥细胞与双极细胞的连接在整个视网膜中保持恒定。不同亚组的双极细胞通过它们对不同抗血清的相对免疫反应性来区分。所有视杆和视锥双极细胞都显示出中度至强烈的谷氨酸样免疫反应性。显示弱至中度GABA样免疫反应性的双极细胞也被抗L7蛋白的抗血清标记,因此被鉴定为视杆双极细胞。几乎一半的视锥双极细胞显示出甘氨酸样免疫反应性。结果表明,抑制性神经递质候选物GABA和甘氨酸分别在视杆和视锥双极细胞通路中分离。一种弥散型的视锥双极细胞类型可通过抗小白蛋白和抗钙结合蛋白抗血清鉴定出来。所有水平细胞都显示出小白蛋白样免疫反应性。几乎所有无长突细胞都显示出GABA样或甘氨酸样免疫反应性;各种亚群也显示出对所用的一种或多种其他标记物的免疫反应性。