Suppr超能文献

三羧甲基丙烷和反式乌头酸的微生物异化作用

MICROBIOLOGICAL DISSIMILATION OF TRICARBALLYLATE AND TRANS-ACONITATE.

作者信息

ALTEKAR W W, RAO M R

出版信息

J Bacteriol. 1963 Mar;85(3):604-13. doi: 10.1128/jb.85.3.604-613.1963.

Abstract

Altekar, W. W. (National Chemical Laboratory, Poona, India) and M. R. Raghavendra Rao. Microbiological dissimilation of tricarballylate and trans-aconitate. J. Bacteriol. 85:604-613. 1963.-Two fluorescent pseudomonads capable of metabolizing tricarballylate and trans-aconitate were isolated by the soil-enrichment culture technique. These and some other species of bacteria were tested for their ability to utilize for growth the salts of many di- and tricarboxylic acids. Alloisocitrate and mesaconate were not utilized by any of the ten strains tested; only two strains grew on tricarballylate and itaconate. trans-Aconitate was utilized by many strains which had not been previously exposed to this compound. The resting cells of two strains could adapt to oxidize two acids (tricarballylate and trans-aconitate), and this induction was chloramphenicol-sensitive. The tricarballylate-grown cells were simultaneously induced to oxidize trans-aconitate and other tricarboxylates, whereas the trans-aconitate-grown cells were not induced to oxidize tricarballylate, and their subsequent induction was inhibited by chloramphenicol. This trans-aconitate or tricarballylate. But tricarballylate dehydrogenase was present only in tricarballylate-grown cells. The cell-free extracts of the two organisms contained the enzymes of the Krebs cycle and isocitritase. These enzymes are most probably operative during growth on and oxidation of these two acids as sole carbon sources.

摘要

阿尔特卡尔,W. W.(印度浦那国家化学实验室)和M. R. 拉格文德拉·拉奥。三羧甲基丙烷和反乌头酸的微生物异化作用。《细菌学杂志》85:604 - 613。1963年。——通过土壤富集培养技术分离出了两种能够代谢三羧甲基丙烷和反乌头酸的荧光假单胞菌。对这些细菌以及其他一些细菌种类进行了测试,以检测它们利用多种二元和三元羧酸的盐进行生长的能力。在所测试的10个菌株中,没有一个能利用异柠檬酸和中乌头酸;只有两个菌株能在三羧甲基丙烷和衣康酸上生长。许多之前未接触过反乌头酸的菌株能够利用反乌头酸。两株菌的静息细胞能够适应氧化两种酸(三羧甲基丙烷和反乌头酸),并且这种诱导对氯霉素敏感。在三羧甲基丙烷上生长的细胞同时被诱导氧化反乌头酸和其他三羧酸,而在反乌头酸上生长的细胞未被诱导氧化三羧甲基丙烷,并且它们随后的诱导被氯霉素抑制。这种反乌头酸或三羧甲基丙烷。但是三羧甲基丙烷脱氢酶仅存在于在三羧甲基丙烷上生长的细胞中。这两种生物体的无细胞提取物含有三羧酸循环的酶和异柠檬酸酶。这些酶很可能在以这两种酸作为唯一碳源进行生长和氧化过程中发挥作用。

相似文献

1
MICROBIOLOGICAL DISSIMILATION OF TRICARBALLYLATE AND TRANS-ACONITATE.
J Bacteriol. 1963 Mar;85(3):604-13. doi: 10.1128/jb.85.3.604-613.1963.
3
The transport of citrate and other tricarboxylic acids in two species of Pseudomonas.
Biochem J. 1971 Jul;123(4):571-7. doi: 10.1042/bj1230571.
6
Enrichment and Isolation of Rumen Bacteria That Reduce trans- Aconitic Acid to Tricarballylic Acid.
Appl Environ Microbiol. 1985 Jan;49(1):120-6. doi: 10.1128/aem.49.1.120-126.1985.
8
Transport of tricarballylate by intestinal brush-border membrane vesicles from steers.
Exp Physiol. 1993 Jul;78(4):473-84. doi: 10.1113/expphysiol.1993.sp003699.
9
Constitutive production of aconitate isomerase by Pseudomonas sp. WU-0701 in relation to trans-aconitic acid assimilation.
J Biosci Bioeng. 2021 Jan;131(1):47-52. doi: 10.1016/j.jbiosc.2020.09.003. Epub 2020 Sep 29.
10
The Tricarballylate utilization (tcuRABC) genes of Salmonella enterica serovar Typhimurium LT2.
J Bacteriol. 2004 Mar;186(6):1629-37. doi: 10.1128/JB.186.6.1629-1637.2004.

引用本文的文献

1
Regulation of tricarboxylate transport and metabolism in ADP1.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0211123. doi: 10.1128/aem.02111-23. Epub 2024 Jan 30.
2
Multi-Omics Approaches to Define Calcific Aortic Valve Disease Pathogenesis.
Circ Res. 2021 Apr 30;128(9):1371-1397. doi: 10.1161/CIRCRESAHA.120.317979. Epub 2021 Apr 29.
3
Plasma and urine metabolomic analyses in aortic valve stenosis reveal shared and biofluid-specific changes in metabolite levels.
PLoS One. 2020 Nov 25;15(11):e0242019. doi: 10.1371/journal.pone.0242019. eCollection 2020.
4
Genetic and Biochemical Characterization of a Gene Operon for -Aconitic Acid, a Novel Nematicide from .
J Biol Chem. 2017 Feb 24;292(8):3517-3530. doi: 10.1074/jbc.M116.762666. Epub 2017 Jan 13.
5
Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate.
Microb Biotechnol. 2016 Jan;9(1):116-26. doi: 10.1111/1751-7915.12329. Epub 2015 Dec 7.
7
The transport of citrate and other tricarboxylic acids in two species of Pseudomonas.
Biochem J. 1971 Jul;123(4):571-7. doi: 10.1042/bj1230571.

本文引用的文献

1
Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways.
J Bacteriol. 1947 Sep;54(3):339-48. doi: 10.1128/jb.54.3.339-348.1947.
2
Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids.
Biochim Biophys Acta. 1950 Jan;4(1-3):211-4. doi: 10.1016/0006-3002(50)90026-6.
4
[The biosynthesis of beta-galactosidase (lactase) in Escherichia coli; the specificity of induction].
Biochim Biophys Acta. 1951 Nov;7(4):585-99. doi: 10.1016/0006-3002(51)90072-8.
5
Factors affecting the activity of aconitase.
J Biol Chem. 1951 Jan;188(1):379-88.
6
Tricarballylate dehydrogenase.
Biochem Biophys Res Commun. 1962 Feb 20;7:62-6. doi: 10.1016/0006-291x(62)90146-8.
7
Aconitate isomerase.
Biochem Biophys Res Commun. 1961 Feb 24;4:101-5. doi: 10.1016/0006-291x(61)90355-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验