Cardiovascular Division, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences (M.C.B., E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
Center for Molecular Cardiology, University of Zurich, Schlieren, CH (S.K., T.F.L.).
Circ Res. 2021 Apr 30;128(9):1371-1397. doi: 10.1161/CIRCRESAHA.120.317979. Epub 2021 Apr 29.
Calcific aortic valve disease sits at the confluence of multiple world-wide epidemics of aging, obesity, diabetes, and renal dysfunction, and its prevalence is expected to nearly triple over the next 3 decades. This is of particularly dire clinical relevance, as calcific aortic valve disease can progress rapidly to aortic stenosis, heart failure, and eventually premature death. Unlike in atherosclerosis, and despite the heavy clinical toll, to date, no pharmacotherapy has proven effective to halt calcific aortic valve disease progression, with invasive and costly aortic valve replacement representing the only treatment option currently available. This substantial gap in care is largely because of our still-limited understanding of both normal aortic valve biology and the key regulatory mechanisms that drive disease initiation and progression. Drug discovery is further hampered by the inherent intricacy of the valvular microenvironment: a unique anatomic structure, a complex mixture of dynamic biomechanical forces, and diverse and multipotent cell populations collectively contributing to this currently intractable problem. One promising and rapidly evolving tactic is the application of multiomics approaches to fully define disease pathogenesis. Herein, we summarize the application of (epi)genomics, transcriptomics, proteomics, and metabolomics to the study of valvular heart disease. We also discuss recent forays toward the omics-based characterization of valvular (patho)biology at single-cell resolution; these efforts promise to shed new light on cellular heterogeneity in healthy and diseased valvular tissues and represent the potential to efficaciously target and treat key cell subpopulations. Last, we discuss systems biology- and network medicine-based strategies to extract meaning, mechanisms, and prioritized drug targets from multiomics datasets.
钙化性主动脉瓣疾病是多种全球性老龄化、肥胖、糖尿病和肾功能障碍流行的交汇点,预计在未来 30 年内,其患病率将增加近两倍。这在临床上尤其具有严重意义,因为钙化性主动脉瓣疾病可迅速进展为主动脉瓣狭窄、心力衰竭,并最终导致过早死亡。与动脉粥样硬化不同,尽管临床负担沉重,但迄今为止,还没有任何药物治疗被证明可以有效阻止钙化性主动脉瓣疾病的进展,而侵入性和昂贵的主动脉瓣置换术是目前唯一可用的治疗选择。这种护理上的巨大差距主要是由于我们对正常主动脉瓣生物学和驱动疾病发生和进展的关键调节机制的理解仍然有限。药物发现还受到瓣膜微环境固有复杂性的阻碍:独特的解剖结构、复杂的动态生物力学力混合以及多样化和多能细胞群体共同促成了这一目前难以解决的问题。一种很有前途且迅速发展的策略是应用多组学方法来全面定义疾病的发病机制。在此,我们总结了(表观)基因组学、转录组学、蛋白质组学和代谢组学在心脏瓣膜疾病研究中的应用。我们还讨论了最近在基于组学的单细胞分辨率上对瓣膜(病理)生物学进行特征描述的尝试;这些努力有望为健康和患病瓣膜组织中的细胞异质性提供新的认识,并有可能有效地针对和治疗关键细胞亚群。最后,我们讨论了基于系统生物学和网络医学的策略,从多组学数据集中提取意义、机制和优先药物靶点。
Circ Res. 2021-4-30
Arterioscler Thromb Vasc Biol. 2023-3
Physiol Genomics. 2020-4-1
J Cardiovasc Transl Res. 2016-4
JACC Cardiovasc Interv. 2018-9-10
Nat Rev Dis Primers. 2016-3-3
Cardiovasc Res. 2025-8-28
JACC Basic Transl Sci. 2025-6
Sovrem Tekhnologii Med. 2025
Nat Rev Cardiol. 2025-2-19
Metabolites. 2024-1-26
Nat Rev Chem. 2020-12
Front Cardiovasc Med. 2022-4-6
JACC Basic Transl Sci. 2020-12-28
JACC Basic Transl Sci. 2020-12-16
J Biol Chem. 2021
Arterioscler Thromb Vasc Biol. 2021-2