Suppr超能文献

红细胞的氧合-脱氧循环调节亚微米级细胞膜波动。

Oxygenation-deoxygenation cycle of erythrocytes modulates submicron cell membrane fluctuations.

作者信息

Tuvia S, Levin S, Korenstein R

机构信息

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel.

出版信息

Biophys J. 1992 Aug;63(2):599-602. doi: 10.1016/S0006-3495(92)81625-9.

Abstract

Low frequency submicron fluctuations of the cell membrane were recently shown to be characteristic for different cell types, nevertheless their physiological role is yet unknown. Point dark-field microscopy based recordings of these local displacements of cell membrane in human erythrocytes, subjected to cyclic oxygenation and deoxygenation, reveals a reversible decrease of displacement amplitudes from 290 +/- 49 to 160 +/- 32 nm, respectively. A higher rate of RBC adhesion to a glass substratum is observed upon deoxygenation, probably due to a low level of fluctuation amplitudes. The variation in the amplitude of these displacements were reconstituted in open RBC ghosts by perfusing them with composite solutions of 2,3 diphosphoglycerate, Mg+2, and MgATP, which mimic the intracellular metabolite concentrations in oxygenated and deoxygenated erythrocytes. The mere change in intracellular Mg+2 during oxygenation-deoxygenation cycle is sufficient to explain these findings. The results imply that the magnitude of fluctuations amplitude is directly connected with cell deformability. This study suggests that the physiological cycle of oxygenation-deoxygenation provides a dynamic control of the bending deformability and adhesiveness characteristics of the RBC via a Mg+2-dependent reversible assembly of membrane-skeleton proteins. The existing coupling between oxygenation-deoxygenation of the RBC and its mechanical properties is expected to play a key role in blood microcirculation and may constitute an example of a general situation for other circulating blood cells, where the metabolic control of cytoskeleton dynamics may modulate their dynamic mechanical properties.

摘要

最近研究表明,细胞膜的低频亚微米级波动是不同细胞类型的特征,但它们的生理作用尚不清楚。基于点暗场显微镜对人类红细胞细胞膜这些局部位移的记录,在进行循环氧合和脱氧处理时,发现位移幅度分别从290±49纳米可逆地降至160±32纳米。脱氧时观察到红细胞与玻璃基质的黏附率更高,这可能是由于波动幅度水平较低。通过用2,3-二磷酸甘油酸、Mg²⁺和MgATP的复合溶液灌注开放的红细胞影,模拟氧合和脱氧红细胞中的细胞内代谢物浓度,重构了这些位移幅度的变化。氧合-脱氧循环过程中细胞内Mg²⁺的单纯变化足以解释这些发现。结果表明,波动幅度的大小与细胞变形能力直接相关。这项研究表明,氧合-脱氧的生理循环通过膜骨架蛋白的Mg²⁺依赖性可逆组装,对红细胞的弯曲变形能力和黏附特性进行动态控制。红细胞氧合-脱氧与其力学性能之间现有的耦合作用,预计在血液微循环中起关键作用,并且可能是其他循环血细胞普遍情况的一个例子,即细胞骨架动力学的代谢控制可能调节其动态力学性能。

相似文献

1
Oxygenation-deoxygenation cycle of erythrocytes modulates submicron cell membrane fluctuations.
Biophys J. 1992 Aug;63(2):599-602. doi: 10.1016/S0006-3495(92)81625-9.
3
Beta-adrenergic agonists regulate cell membrane fluctuations of human erythrocytes.
J Physiol. 1999 May 1;516 ( Pt 3)(Pt 3):781-92. doi: 10.1111/j.1469-7793.1999.0781u.x.
4
Low-frequency submicron fluctuations of red blood cells in diabetic retinopathy.
Arch Ophthalmol. 1998 Oct;116(10):1321-5. doi: 10.1001/archopht.116.10.1321.
5
Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology.
Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2335-42. doi: 10.1152/ajpheart.01030.2002.
7
The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
Bioelectrochemistry. 2004 May;62(2):107-13. doi: 10.1016/j.bioelechem.2003.08.002.
8
Membrane potential and human erythrocyte shape.
Biophys J. 1997 Mar;72(3):1220-33. doi: 10.1016/S0006-3495(97)78769-1.
9
The influence of deformation of transformed erythrocytes during flow on the rate of oxygen release.
J Physiol. 1983 Jun;339:573-84. doi: 10.1113/jphysiol.1983.sp014734.
10
Correlation between local cell membrane displacements and filterability of human red blood cells.
FEBS Lett. 1992 Jun 8;304(1):32-6. doi: 10.1016/0014-5793(92)80583-3.

引用本文的文献

1
Mechanical adaptivity of red blood cell flickering to extrinsic membrane stiffening by the solid-like biosurfactant β-Aescin.
Biophys J. 2025 May 6;124(9):1478-1495. doi: 10.1016/j.bpj.2025.03.027. Epub 2025 Apr 1.
2
Numerical and in vitro experimental studies for assessing the blood hematocrit and oxygenation with the dual-wavelength photoacoustics.
Photoacoustics. 2024 Aug 30;39:100642. doi: 10.1016/j.pacs.2024.100642. eCollection 2024 Oct.
3
Metabolite and protein shifts in mature erythrocyte under hypoxia.
iScience. 2024 Feb 23;27(4):109315. doi: 10.1016/j.isci.2024.109315. eCollection 2024 Apr 19.
6
From Experiments to Simulation: Shear-Induced Responses of Red Blood Cells to Different Oxygen Saturation Levels.
Front Physiol. 2020 Jan 22;10:1559. doi: 10.3389/fphys.2019.01559. eCollection 2019.
7
Altered Hemorheology in Fontan Patients in Normoxia and After Acute Hypoxic Exercise.
Front Physiol. 2019 Nov 22;10:1443. doi: 10.3389/fphys.2019.01443. eCollection 2019.
8
Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane.
Mol Biol Cell. 2015 May 1;26(9):1699-710. doi: 10.1091/mbc.E14-12-1583. Epub 2015 Feb 25.

本文引用的文献

3
Red blood cells experience electrostatic repulsion but make molecular adhesions with glass.
Biophys J. 1985 Nov;48(5):835-41. doi: 10.1016/S0006-3495(85)83842-X.
4
Red cell deformability and its relevance to blood flow.
Annu Rev Physiol. 1987;49:177-92. doi: 10.1146/annurev.ph.49.030187.001141.
5
Thermal-mechanical fluctuations enhance repulsion between bimolecular layers.
Proc Natl Acad Sci U S A. 1986 Oct;83(19):7132-6. doi: 10.1073/pnas.83.19.7132.
6
The control of red cell magnesium.
Magnes Res. 1988 Jul;1(1-2):5-11.
7
31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.
Biochim Biophys Acta. 1990 Aug 17;1035(2):169-74. doi: 10.1016/0304-4165(90)90112-a.
8
Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm.
Physiol Rev. 1990 Oct;70(4):1029-65. doi: 10.1152/physrev.1990.70.4.1029.
9
Local mechanical oscillations of the cell surface within the range 0.2-30 Hz.
Eur Biophys J. 1990;19(2):93-9. doi: 10.1007/BF00185092.
10
Fast cell membrane displacements in B lymphocytes. Modulation by dihydrocytochalasin B and colchicine.
FEBS Lett. 1991 Nov 18;293(1-2):207-10. doi: 10.1016/0014-5793(91)81188-e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验