Suppr超能文献

四氢生物蝶呤可防止酪氨酸羟化酶被过氧亚硝酸盐和二氧化氮硝化。

Tetrahydrobiopterin prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide.

作者信息

Kuhn Donald M, Geddes Timothy J

机构信息

Wayne State University School of Medicine, 2125 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA.

出版信息

Mol Pharmacol. 2003 Oct;64(4):946-53. doi: 10.1124/mol.64.4.946.

Abstract

Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the synthesis of the neurotransmitter dopamine. TH is inhibited and nitrated at tyrosine residues in vitro by the reactive nitrogen species peroxynitrite and nitrogen dioxide (NO2) and in vivo by drugs that damage dopamine neurons. Tetrahydrobiopterin, which is the essential cofactor for TH and is concentrated in dopamine neurons, completely blocks nitration of tyrosine residues in TH caused by peroxynitrite or NO2. Various tetrahydro- and dihydro-analogs of tetrahydrobiopterin, including 6,7-dimethyl-tetrahydropterin, 6-methyl-tetrahydropterin, 6-hydroxymethyl-tetrahydropterin, tetrahydropterin, 7,8-dihydrobiopterin, 7,8-dihydroxanthopterin, and sepiapterin, also prevent nitration of tyrosines caused by the reactive nitrogen species. Biopterin and pterin, the fully oxidized forms of the pterin molecule, fail to block peroxynitrite- or NO2-induced nitration of TH. Reduced pterins prevent neither the inhibition of TH activity nor cysteine modification caused by peroxynitrite or NO2, despite blocking tyrosine nitration. However, dithiothreitol prevents and reverses these effects on TH of tetrahydrobiopterin and reactive nitrogen species. Using an enhanced green fluorescent protein-TH fusion construct as a real-time reporter of intracellular tyrosine nitration, tetrahydrobiopterin was found to prevent NO2-induced tyrosine nitration in intact cells but to leave TH activity inhibited. These results indicate that tetrahydrobiopterin prevents the tyrosine-nitrating properties of peroxynitrite and NO2. Tetrahydrobiopterin-derived radical species formed by reaction with reactive nitrogen species may account for inhibition of TH via mechanisms that do not involve tyrosine nitration.

摘要

酪氨酸羟化酶(TH)是神经递质多巴胺合成过程中的起始酶和限速酶。在体外,TH会被活性氮物质过氧亚硝酸根和二氧化氮(NO₂)在酪氨酸残基处抑制并发生硝化反应,在体内则会被损害多巴胺神经元的药物抑制并硝化。四氢生物蝶呤是TH的必需辅因子,且在多巴胺神经元中富集,它能完全阻断过氧亚硝酸根或NO₂引起的TH中酪氨酸残基的硝化反应。四氢生物蝶呤的各种四氢和二氢类似物,包括6,7-二甲基四氢蝶呤、6-甲基四氢蝶呤、6-羟甲基四氢蝶呤、四氢蝶呤、7,8-二氢生物蝶呤、7,8-二氢黄蝶呤和蝶酰谷氨酸,也能防止活性氮物质引起的酪氨酸硝化反应。蝶呤和喋啶,即蝶呤分子的完全氧化形式,无法阻断过氧亚硝酸根或NO₂诱导的TH硝化反应。还原型蝶呤尽管能阻断酪氨酸硝化反应,但既不能防止过氧亚硝酸根或NO₂对TH活性的抑制,也不能防止其对半胱氨酸的修饰。然而,二硫苏糖醇能防止并逆转四氢生物蝶呤和活性氮物质对TH的这些影响。使用增强型绿色荧光蛋白-TH融合构建体作为细胞内酪氨酸硝化反应的实时报告基因,发现四氢生物蝶呤能防止完整细胞中NO₂诱导的酪氨酸硝化反应,但TH活性仍受到抑制。这些结果表明,四氢生物蝶呤可防止过氧亚硝酸根和NO₂的酪氨酸硝化特性。与活性氮物质反应形成的四氢生物蝶呤衍生自由基可能通过不涉及酪氨酸硝化的机制导致TH受到抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验