Suppr超能文献

在半胱氨酸或谷胱甘肽存在的情况下,活性氮物质对酪氨酸羟化酶进行S-硫醇化修饰。

S-thiolation of tyrosine hydroxylase by reactive nitrogen species in the presence of cysteine or glutathione.

作者信息

Sadidi Mahdieh, Geddes Timothy J, Kuhn Donald M

机构信息

Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.

出版信息

Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):863-9. doi: 10.1089/ars.2005.7.863.

Abstract

Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine. Peroxynitrite (ONOO-) and nitrogen dioxide (NO2) inhibit TH catalytic function and cause nitration of protein tyrosine residues. Exposure of TH to either ONOO- or NO2 in the presence of cysteine (or glutathione) prevents tyrosine nitration and results in S-thiolation instead. TH catalytic activity is suppressed by S-thiolation. Dithiothreitol prevents and reverses the modification of TH by S-thiolation, and returns enzyme activity to control levels. S-Nitrosothiols, which are known to S-thiolate proteins, can be formed in the reaction of cysteine or glutathione with reactive nitrogen species. Therefore, S-nitrosoglutathione (GSNO) was tested for its ability to modify TH. Fresh solutions of GSNO did not modify TH, whereas decomposed GSNO resulted in extensive S-thiolation of the protein. Dimedone, a sulfenic acid trap, prevents S-thiolation of TH when included with GSNO during its decomposition. Taken together, these results show that TH is S-thiolated by ONOO- or NO2 in the presence of cysteine. S-Thiolation occurs at the expense of tyrosine nitration. Glutathione disulfide S-oxide, which forms spontaneously in the decomposition of GSNO and which is found in tissue undergoing oxidative stress, may be the species that S-thiolates TH.

摘要

酪氨酸羟化酶(TH)是神经递质多巴胺生物合成过程中的起始和限速酶。过氧亚硝酸盐(ONOO-)和二氧化氮(NO2)会抑制TH的催化功能,并导致蛋白质酪氨酸残基发生硝化反应。在半胱氨酸(或谷胱甘肽)存在的情况下,将TH暴露于ONOO-或NO2中可防止酪氨酸硝化,转而导致S-硫醇化反应。TH的催化活性会被S-硫醇化作用所抑制。二硫苏糖醇可防止并逆转TH的S-硫醇化修饰,并使酶活性恢复到对照水平。已知能使蛋白质发生S-硫醇化反应的S-亚硝基硫醇,可在半胱氨酸或谷胱甘肽与活性氮物质的反应中形成。因此,对S-亚硝基谷胱甘肽(GSNO)修饰TH的能力进行了测试。新鲜的GSNO溶液不会修饰TH,而分解后的GSNO会导致该蛋白质发生广泛的S-硫醇化反应。次硫酸捕获剂二甲酮在GSNO分解过程中与之一同存在时,可防止TH的S-硫醇化反应。综上所述,这些结果表明,在半胱氨酸存在的情况下,TH会被ONOO-或NO2进行S-硫醇化修饰。S-硫醇化反应是以酪氨酸硝化为代价发生的。在GSNO分解过程中自发形成且在经历氧化应激的组织中存在的谷胱甘肽二硫化物S-氧化物,可能是使TH发生S-硫醇化反应的物质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验