Bui My N, Brittany Johnson M, Viard Mathias, Satterwhite Emily, Martins Angelica N, Li Zhihai, Marriott Ian, Afonin Kirill A, Khisamutdinov Emil F
Department of Chemistry, Ball State University, Muncie, IN, USA.
Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
Nanomedicine. 2017 Apr;13(3):1137-1146. doi: 10.1016/j.nano.2016.12.018. Epub 2017 Jan 4.
RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community.
RNA纳米技术利用经过合成修饰的核糖核酸(RNA)构建一维、二维和三维的高度稳定的纳米结构,用于医学应用。尽管RNA纳米技术具有巨大优势,但未修饰的RNA本身很脆弱,容易被酶降解。与使用传统修饰的RNA链(如2'-氟、2'-胺、2'-甲基)不同,我们研究了利用计算机辅助的RNA四尿嘧啶(tetra-U)基序作为工具的RNA/DNA杂交方法的效果,以解决与杂交RNA/DNA纳米颗粒的组装效率、通用性、稳定性和生产成本相关的问题。tetra-U RNA基序被用于使用RNA、DNA和RNA/DNA混合物构建四个功能性三角形,从而实现了可微调的酶稳定性和热力学稳定性、免疫刺激活性和RNA干扰能力。此外,tetra-U工具包在制造矩形、五边形和六边形纳米颗粒方面具有巨大潜力,这代表了RNA/DNA方法在RNA纳米技术和纳米医学领域的简单性优势。