Suppr超能文献

多功能RNA四聚体U螺旋连接基序作为核酸纳米技术的一种工具

Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.

作者信息

Bui My N, Brittany Johnson M, Viard Mathias, Satterwhite Emily, Martins Angelica N, Li Zhihai, Marriott Ian, Afonin Kirill A, Khisamutdinov Emil F

机构信息

Department of Chemistry, Ball State University, Muncie, IN, USA.

Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.

出版信息

Nanomedicine. 2017 Apr;13(3):1137-1146. doi: 10.1016/j.nano.2016.12.018. Epub 2017 Jan 4.

Abstract

RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community.

摘要

RNA纳米技术利用经过合成修饰的核糖核酸(RNA)构建一维、二维和三维的高度稳定的纳米结构,用于医学应用。尽管RNA纳米技术具有巨大优势,但未修饰的RNA本身很脆弱,容易被酶降解。与使用传统修饰的RNA链(如2'-氟、2'-胺、2'-甲基)不同,我们研究了利用计算机辅助的RNA四尿嘧啶(tetra-U)基序作为工具的RNA/DNA杂交方法的效果,以解决与杂交RNA/DNA纳米颗粒的组装效率、通用性、稳定性和生产成本相关的问题。tetra-U RNA基序被用于使用RNA、DNA和RNA/DNA混合物构建四个功能性三角形,从而实现了可微调的酶稳定性和热力学稳定性、免疫刺激活性和RNA干扰能力。此外,tetra-U工具包在制造矩形、五边形和六边形纳米颗粒方面具有巨大潜力,这代表了RNA/DNA方法在RNA纳米技术和纳米医学领域的简单性优势。

相似文献

1
Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.
Nanomedicine. 2017 Apr;13(3):1137-1146. doi: 10.1016/j.nano.2016.12.018. Epub 2017 Jan 4.
2
Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules.
Nat Commun. 2019 Feb 5;10(1):608. doi: 10.1038/s41467-019-08521-6.
4
Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles.
ACS Nano. 2015 Jan 27;9(1):251-9. doi: 10.1021/nn504508s. Epub 2014 Dec 18.
6
RNA self-assembly and RNA nanotechnology.
Acc Chem Res. 2014 Jun 17;47(6):1871-80. doi: 10.1021/ar500076k. Epub 2014 May 23.
10
Directed Assembly of Nucleic Acid-Based Polymeric Nanoparticles from Molecular Tetravalent Cores.
J Am Chem Soc. 2015 Jul 1;137(25):8184-91. doi: 10.1021/jacs.5b03485. Epub 2015 Jun 19.

引用本文的文献

1
Applications of Surface Plasmon Resonance for Advanced Studies Involving Nucleic Acids.
RNA Nanomed. 2024 Dec;1(1):44-60. doi: 10.59566/ISRNN.2024.0101044.
3
Unleashing the potential of catalytic RNAs to combat mis-spliced transcripts.
Front Bioeng Biotechnol. 2023 Nov 16;11:1244377. doi: 10.3389/fbioe.2023.1244377. eCollection 2023.
4
Discriminating Immunorecognition Pathways Activated by RNA Nanostructures.
Methods Mol Biol. 2023;2709:229-240. doi: 10.1007/978-1-0716-3417-2_15.
5
Assessment of Intracellular Compartmentalization of RNA Nanostructures.
Methods Mol Biol. 2023;2709:211-228. doi: 10.1007/978-1-0716-3417-2_14.
7
Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles.
ACS Appl Mater Interfaces. 2023 May 31;15(21):25300-25312. doi: 10.1021/acsami.3c01604. Epub 2023 May 19.
10
Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation.
Adv Drug Deliv Rev. 2022 Feb;181:114081. doi: 10.1016/j.addr.2021.114081. Epub 2021 Dec 13.

本文引用的文献

1
Functionally-interdependent shape-switching nanoparticles with controllable properties.
Nucleic Acids Res. 2017 Feb 28;45(4):2210-2220. doi: 10.1093/nar/gkx008.
2
Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system.
J Neurovirol. 2017 Feb;23(1):47-66. doi: 10.1007/s13365-016-0499-3. Epub 2016 Nov 21.
4
Ring Catalog: A resource for designing self-assembling RNA nanostructures.
Methods. 2016 Jul 1;103:128-37. doi: 10.1016/j.ymeth.2016.04.016. Epub 2016 Apr 26.
6
The solution structural ensembles of RNA kink-turn motifs and their protein complexes.
Nat Chem Biol. 2016 Mar;12(3):146-52. doi: 10.1038/nchembio.1997. Epub 2016 Jan 4.
7
Controllable self-assembly of RNA dendrimers.
Nanomedicine. 2016 Apr;12(3):835-844. doi: 10.1016/j.nano.2015.11.008. Epub 2015 Dec 2.
8
The Kink Turn, a Key Architectural Element in RNA Structure.
J Mol Biol. 2016 Feb 27;428(5 Pt A):790-801. doi: 10.1016/j.jmb.2015.09.026. Epub 2015 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验