Kitaya Y, Okayama T, Murakami K, Takeuchi T
Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Osaka, Japan.
Adv Space Res. 2003;31(7):1743-9. doi: 10.1016/s0273-1177(03)00113-3.
In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.
除了绿色微藻外,水生高等植物在生物再生系统的水生食物生产模块中可能发挥重要作用,该系统用于生产鱼类饲料、将二氧化碳转化为氧气并改善水质。在本研究中,研究了培养条件对无根沉水植物金鱼藻净光合速率的影响,以确定在包括水生植物培养和鱼类养殖系统的食物生产模块中植物发挥最大功能的最佳培养条件。植物中的净光合速率通过含有一株幼苗和水的封闭容器中溶解氧浓度的增加来确定。在封闭容器之前,用含有已知浓度二氧化碳气体与氮气混合的气体对容器中的水进行充分曝气。曝气气体中的二氧化碳浓度范围为0.3至10 mmol mol-1。容器中的光合光子通量密度(PPFD)范围为0(黑暗)至1.0 mmol m-2 s-1,由金属卤化物灯控制。温度保持在28摄氏度。在二氧化碳水平为1.0和3.0 mmol mol-1时,净光合速率随PPFD水平的增加而增加,并分别在0.2和0.5 mmol m-2 s-1的PPFD下达到饱和。净光合速率随着二氧化碳水平从0.3增加到3.0 mmol mol-1而增加,在2-3 mmol mol-1的二氧化碳水平下显示出最大值75 nmol O2 gDW-1 s-1,并随着二氧化碳水平从3.0增加到10 mmol mol-1而逐渐降低。结果表明,在水生食物生产模块中,在2.0 mmol mol-1的二氧化碳水平和相对较低的PPFD水平下,金鱼藻可能是一种有效的二氧化碳到氧气的转换器。