Prodöhl Carsten, Würtz Rolf P, von der Malsburg Christoph
Institut für Neuroinformatik, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
Neural Comput. 2003 Aug;15(8):1865-96. doi: 10.1162/08997660360675071.
The Gestalt principle of collinearity (and curvilinearity) is widely regarded as being mediated by the long-range connection structure in primary visual cortex. We review the neurophysiological and psychophysical literature to argue that these connections are developed from visual experience after birth, relying on coherent object motion. We then present a neural network model that learns these connections in an unsupervised Hebbian fashion with input from real camera sequences. The model uses spatiotemporal retinal filtering, which is very sensitive to changes in the visual input. We show that it is crucial for successful learning to use the correlation of the transient responses instead of the sustained ones. As a consequence, learning works best with video sequences of moving objects. The model addresses a special case of the fundamental question of what represents the necessary a priori knowledge the brain is equipped with at birth so that the self-organized process of structuring by experience can be successful.
格式塔共线性(和曲线性)原则被广泛认为是由初级视觉皮层中的长程连接结构介导的。我们回顾了神经生理学和心理物理学文献,认为这些连接是出生后从视觉经验中发展而来的,依赖于连贯的物体运动。然后,我们提出了一个神经网络模型,该模型以无监督的赫布方式从真实相机序列的输入中学习这些连接。该模型使用时空视网膜滤波,对视觉输入的变化非常敏感。我们表明,使用瞬态响应的相关性而不是持续响应对于成功学习至关重要。因此,学习在移动物体的视频序列中效果最佳。该模型解决了一个基本问题的特殊情况,即大脑出生时具备哪些必要的先验知识,以便通过经验进行自组织的结构化过程能够成功。