Suppr超能文献

Decreased mAKAP, ryanodine receptor, and SERCA2a gene expression in mdx hearts.

作者信息

Rohman Mohammad Saifur, Emoto Noriaki, Takeshima Yasuhiro, Yokoyama Mitsuhiro, Matsuo Masafumi

机构信息

Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan.

出版信息

Biochem Biophys Res Commun. 2003 Oct 10;310(1):228-35. doi: 10.1016/j.bbrc.2003.09.005.

Abstract

Duchenne muscular dystrophy (DMD) is a common genetic disease resulting from mutations in the dystrophin gene. The lack of dystrophin function as a cytoskeletal protein leads to abnormal intracellular Ca(2+) homeostasis, the actual source and functional consequences of which remain obscure. The mdx mouse, a mouse model of DMD, revealed alterations in contractile properties that are likely due to defective Ca(2+) handling. However, the exact mechanisms of the Ca(2+) handling defect are unclear. We performed suppressive subtractive hybridization to isolate differentially expressed genes between 5-month-old mdx and control mice. We observed a decrease in muscle A-kinase anchoring protein (mAKAP) in the mdx hearts. We noticed not only down-regulation of mAKAP mRNA but also decreased mRNA level of the molecules involved in Ca(2+) handling and excitation-contraction (E-C) coupling in the sarcoplasmic reticulum (SR), the cardiac ryanodine receptor, and the sarcoplasmic reticulum Ca(2+) ATPase. Therefore, dystrophin deficiency may cause an impairment of SR Ca(2+) homeostasis and E-C coupling in mdx hearts, in part, by decreased gene expression of molecules involved in SR Ca(2+) handling.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验