Rosso Alberto, Krauth Werner, Doussal Pierre Le, Vannimenus Jean, Wiese Kay Jörg
CNRS-Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036128. doi: 10.1103/PhysRevE.68.036128. Epub 2003 Sep 24.
We compute the probability distribution of the interface width at the depinning threshold, using recent powerful algorithms. It confirms the universality classes found previously. In all cases, the distribution is surprisingly well approximated by a generalized Gaussian theory of independent modes which decay with a characteristic propagator G(q)=1/q(d+2zeta); zeta, the roughness exponent, is computed independently. A functional renormalization analysis explains this result and allows one to compute the small deviations, i.e., a universal kurtosis ratio, in agreement with numerics. We stress the importance of the Gaussian theory to interpret numerical data and experiments.
我们使用最近强大的算法计算了脱钉阈值处界面宽度的概率分布。它证实了先前发现的普适类。在所有情况下,该分布都令人惊讶地很好地由独立模式的广义高斯理论近似,这些模式以特征传播子(G(q)=1/q(d + 2\zeta))衰减;粗糙度指数(\zeta)是独立计算的。泛函重整化分析解释了这一结果,并允许计算与数值结果一致的小偏差,即通用峰度比。我们强调高斯理论在解释数值数据和实验方面的重要性。