Chertkov Michael
Theoretical Division, LANL, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2003 Sep 12;91(11):115001. doi: 10.1103/PhysRevLett.91.115001. Epub 2003 Sep 9.
I analyze the advanced mixing regime of the Rayleigh-Taylor incompressible turbulence in the small Atwood number Boussinesq approximation. The prime focus of my phenomenological approach is to resolve the temporal behavior and the small-scale spatial correlations of velocity and temperature fields inside the mixing zone, which grows as proportional, variant t(2). I show that the "5/3"-Kolmogorov scenario for velocity and temperature spectra is realized in three spatial dimensions with the viscous and dissipative scales decreasing in time, proportional, variant t(-1/4). The Bolgiano-Obukhov scenario is shown to be valid in two dimensions with the viscous and dissipative scales growing, proportional, variant t(1/8).
我在小阿特伍德数布辛涅斯克近似下分析瑞利 - 泰勒不可压缩湍流的高级混合机制。我唯象方法的主要重点是解析混合区内速度和温度场的时间行为以及小尺度空间相关性,混合区随时间按比例(t^2)增长。我表明,速度和温度谱的“5/3” - 柯尔莫哥洛夫情形在三维空间中得以实现,其中粘性和耗散尺度随时间减小,比例为(t^{-1/4})。结果表明,博尔贾诺 - 奥布霍夫情形在二维空间中有效,粘性和耗散尺度随时间增长,比例为(t^{1/8})。