Zuber Benoît, Haenni Marisa, Ribeiro Tânia, Minnig Kathrin, Lopes Fátima, Moreillon Philippe, Dubochet Jacques
Laboratory of Ultrastructural Analysis, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
J Bacteriol. 2006 Sep;188(18):6652-60. doi: 10.1128/JB.00391-06.
High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.
通过玻璃切片的冷冻电子显微镜可以获得保存最佳的细菌细胞的高分辨率结构信息。借助这项技术,最近发现革兰氏阳性菌枯草芽孢杆菌和金黄色葡萄球菌的质膜与厚肽聚糖层之间存在周质空间。这引发了关于肽聚糖聚合模式的问题。在本研究中,我们报告了三种革兰氏阳性菌(枯草芽孢杆菌、戈登链球菌和鸡肠球菌)的细胞壁结构。在这三种情况下,在周质空间中发现了一个与质膜相邻的先前未描述的颗粒层。为了更好地理解新生肽聚糖是如何掺入成熟肽聚糖中的,我们研究了已知代表细胞壁产生部位的细胞区域。这些部位中的每一个都具有特定的结构。我们提出了一个容纳这些差异的肽聚糖聚合假说模型:肽聚糖前体可以从细胞质输出到周质空间,在那里它们可以扩散,直到与颗粒层和厚肽聚糖层之间的界面相互作用。然后它们可以与成熟肽聚糖聚合。我们报告了鸡肠球菌隔膜处的细胞质结构,这些结构可以解释为驱动细胞分裂的细胞骨架元件(FtsZ环)。尽管免疫电子显微镜和荧光显微镜研究已经证明了FtsZ在隔膜和细胞质中的定位,但在任何对固定和脱水细菌的电子显微镜研究中都没有获得原位FtsZ细丝的直接可视化图像。