Suppr超能文献

螺旋CT图像中小肺结节的三维分割与生长率估计

Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images.

作者信息

Kostis William J, Reeves Anthony P, Yankelevitz David F, Henschke Claudia I

机构信息

Department of Radiology, Weill Medical College, Cornell University, New York, NY 10021, USA.

出版信息

IEEE Trans Med Imaging. 2003 Oct;22(10):1259-74. doi: 10.1109/TMI.2003.817785.

Abstract

Small pulmonary nodules are a common radiographic finding that presents an important diagnostic challenge in contemporary medicine. While pulmonary nodules are the major radiographic indicator of lung cancer, they may also be signs of a variety of benign conditions. Measurement of nodule growth rate over time has been shown to be the most promising tool in distinguishing malignant from nonmalignant pulmonary nodules. In this paper, we describe three-dimensional (3-D) methods for the segmentation, analysis, and characterization of small pulmonary nodules imaged using computed tomography (CT). Methods for the isotropic resampling of anisotropic CT data are discussed. 3-D intensity and morphology-based segmentation algorithms are discussed for several classes of nodules. New models and methods for volumetric growth characterization based on longitudinal CT studies are developed. The results of segmentation and growth characterization methods based on in vivo studies are described. The methods presented are promising in their ability to distinguish malignant from nonmalignant pulmonary nodules and represent the first such system in clinical use.

摘要

小肺结节是一种常见的影像学表现,在当代医学中构成了重要的诊断挑战。虽然肺结节是肺癌的主要影像学指标,但它们也可能是多种良性疾病的征象。已证明,随时间测量结节生长速度是区分恶性与非恶性肺结节最具前景的工具。在本文中,我们描述了用于分割、分析和表征通过计算机断层扫描(CT)成像的小肺结节的三维(3-D)方法。讨论了对各向异性CT数据进行各向同性重采样的方法。针对几类结节,讨论了基于3-D强度和形态学的分割算法。基于纵向CT研究,开发了用于体积生长特征表征的新模型和方法。描述了基于体内研究的分割和生长特征表征方法的结果。所提出的方法在区分恶性与非恶性肺结节方面具有很大潜力,并且代表了首个投入临床使用的此类系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验