Suppr超能文献

基于多特征融合的改进型肺部结节互补分割模型

Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion.

作者信息

Tang Tiequn, Li Feng, Jiang Minshan, Xia Xunpeng, Zhang Rongfu, Lin Kailin

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

Entropy (Basel). 2022 Nov 30;24(12):1755. doi: 10.3390/e24121755.

Abstract

Accurate segmentation of lung nodules from pulmonary computed tomography (CT) slices plays a vital role in the analysis and diagnosis of lung cancer. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in the automatic segmentation of lung nodules. However, they are still challenged by the large diversity of segmentation targets, and the small inter-class variances between the nodule and its surrounding tissues. To tackle this issue, we propose a features complementary network according to the process of clinical diagnosis, which made full use of the complementarity and facilitation among lung nodule location information, global coarse area, and edge information. Specifically, we first consider the importance of global features of nodules in segmentation and propose a cross-scale weighted high-level feature decoder module. Then, we develop a low-level feature decoder module for edge feature refinement. Finally, we construct a complementary module to make information complement and promote each other. Furthermore, we weight pixels located at the nodule edge on the loss function and add an edge supervision to the deep supervision, both of which emphasize the importance of edges in segmentation. The experimental results demonstrate that our model achieves robust pulmonary nodule segmentation and more accurate edge segmentation.

摘要

从肺部计算机断层扫描(CT)切片中准确分割肺结节在肺癌的分析和诊断中起着至关重要的作用。卷积神经网络(CNN)在肺结节的自动分割方面取得了最先进的性能。然而,它们仍然面临着分割目标的巨大多样性以及结节与其周围组织之间较小的类间差异的挑战。为了解决这个问题,我们根据临床诊断过程提出了一个特征互补网络,该网络充分利用了肺结节位置信息、全局粗略区域和边缘信息之间的互补性和促进作用。具体来说,我们首先考虑结节全局特征在分割中的重要性,并提出了一个跨尺度加权高级特征解码器模块。然后,我们开发了一个用于边缘特征细化的低级特征解码器模块。最后,我们构建了一个互补模块,使信息相互补充和促进。此外,我们在损失函数上对位于结节边缘的像素进行加权,并在深度监督中添加边缘监督,这两者都强调了边缘在分割中的重要性。实验结果表明,我们的模型实现了稳健的肺结节分割和更准确的边缘分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1385/9778431/108e2f6f1ece/entropy-24-01755-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验